Short periodic orbit approach to resonances and the fractal Weyl law
We investigate the properties of the semiclassical short periodic orbit approach for the study of open quantum maps that was recently introduced. We provide solid numerical evidence, for the paradigmatic systems of the open baker and cat maps, that by using this approach the dimensionality of the ei...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_15393755_v85_n3_p_Pedrosa |
Aporte de: |
id |
todo:paper_15393755_v85_n3_p_Pedrosa |
---|---|
record_format |
dspace |
spelling |
todo:paper_15393755_v85_n3_p_Pedrosa2023-10-03T16:22:40Z Short periodic orbit approach to resonances and the fractal Weyl law Pedrosa, J.M. Wisniacki, D. Carlo, G.G. Novaes, M. Cat map Eigen-value Eigenvalue problem Numerical evidence Periodic orbits Phase spaces Quantum maps Fractals Phase space methods Time varying systems Eigenvalues and eigenfunctions We investigate the properties of the semiclassical short periodic orbit approach for the study of open quantum maps that was recently introduced. We provide solid numerical evidence, for the paradigmatic systems of the open baker and cat maps, that by using this approach the dimensionality of the eigenvalue problem is reduced according to the fractal Weyl law. The method also reproduces the projectors ψnR ψnL , which involves the right and left states associated with a given eigenvalue and is supported on the classical phase-space repeller. © 2012 American Physical Society. Fil:Wisniacki, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Carlo, G.G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_15393755_v85_n3_p_Pedrosa |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Cat map Eigen-value Eigenvalue problem Numerical evidence Periodic orbits Phase spaces Quantum maps Fractals Phase space methods Time varying systems Eigenvalues and eigenfunctions |
spellingShingle |
Cat map Eigen-value Eigenvalue problem Numerical evidence Periodic orbits Phase spaces Quantum maps Fractals Phase space methods Time varying systems Eigenvalues and eigenfunctions Pedrosa, J.M. Wisniacki, D. Carlo, G.G. Novaes, M. Short periodic orbit approach to resonances and the fractal Weyl law |
topic_facet |
Cat map Eigen-value Eigenvalue problem Numerical evidence Periodic orbits Phase spaces Quantum maps Fractals Phase space methods Time varying systems Eigenvalues and eigenfunctions |
description |
We investigate the properties of the semiclassical short periodic orbit approach for the study of open quantum maps that was recently introduced. We provide solid numerical evidence, for the paradigmatic systems of the open baker and cat maps, that by using this approach the dimensionality of the eigenvalue problem is reduced according to the fractal Weyl law. The method also reproduces the projectors ψnR ψnL , which involves the right and left states associated with a given eigenvalue and is supported on the classical phase-space repeller. © 2012 American Physical Society. |
format |
JOUR |
author |
Pedrosa, J.M. Wisniacki, D. Carlo, G.G. Novaes, M. |
author_facet |
Pedrosa, J.M. Wisniacki, D. Carlo, G.G. Novaes, M. |
author_sort |
Pedrosa, J.M. |
title |
Short periodic orbit approach to resonances and the fractal Weyl law |
title_short |
Short periodic orbit approach to resonances and the fractal Weyl law |
title_full |
Short periodic orbit approach to resonances and the fractal Weyl law |
title_fullStr |
Short periodic orbit approach to resonances and the fractal Weyl law |
title_full_unstemmed |
Short periodic orbit approach to resonances and the fractal Weyl law |
title_sort |
short periodic orbit approach to resonances and the fractal weyl law |
url |
http://hdl.handle.net/20.500.12110/paper_15393755_v85_n3_p_Pedrosa |
work_keys_str_mv |
AT pedrosajm shortperiodicorbitapproachtoresonancesandthefractalweyllaw AT wisniackid shortperiodicorbitapproachtoresonancesandthefractalweyllaw AT carlogg shortperiodicorbitapproachtoresonancesandthefractalweyllaw AT novaesm shortperiodicorbitapproachtoresonancesandthefractalweyllaw |
_version_ |
1807323136029360128 |