Short periodic orbit approach to resonances and the fractal Weyl law

We investigate the properties of the semiclassical short periodic orbit approach for the study of open quantum maps that was recently introduced. We provide solid numerical evidence, for the paradigmatic systems of the open baker and cat maps, that by using this approach the dimensionality of the ei...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Pedrosa, J.M., Wisniacki, D., Carlo, G.G., Novaes, M.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_15393755_v85_n3_p_Pedrosa
Aporte de:
id todo:paper_15393755_v85_n3_p_Pedrosa
record_format dspace
spelling todo:paper_15393755_v85_n3_p_Pedrosa2023-10-03T16:22:40Z Short periodic orbit approach to resonances and the fractal Weyl law Pedrosa, J.M. Wisniacki, D. Carlo, G.G. Novaes, M. Cat map Eigen-value Eigenvalue problem Numerical evidence Periodic orbits Phase spaces Quantum maps Fractals Phase space methods Time varying systems Eigenvalues and eigenfunctions We investigate the properties of the semiclassical short periodic orbit approach for the study of open quantum maps that was recently introduced. We provide solid numerical evidence, for the paradigmatic systems of the open baker and cat maps, that by using this approach the dimensionality of the eigenvalue problem is reduced according to the fractal Weyl law. The method also reproduces the projectors ψnR ψnL , which involves the right and left states associated with a given eigenvalue and is supported on the classical phase-space repeller. © 2012 American Physical Society. Fil:Wisniacki, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Carlo, G.G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_15393755_v85_n3_p_Pedrosa
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Cat map
Eigen-value
Eigenvalue problem
Numerical evidence
Periodic orbits
Phase spaces
Quantum maps
Fractals
Phase space methods
Time varying systems
Eigenvalues and eigenfunctions
spellingShingle Cat map
Eigen-value
Eigenvalue problem
Numerical evidence
Periodic orbits
Phase spaces
Quantum maps
Fractals
Phase space methods
Time varying systems
Eigenvalues and eigenfunctions
Pedrosa, J.M.
Wisniacki, D.
Carlo, G.G.
Novaes, M.
Short periodic orbit approach to resonances and the fractal Weyl law
topic_facet Cat map
Eigen-value
Eigenvalue problem
Numerical evidence
Periodic orbits
Phase spaces
Quantum maps
Fractals
Phase space methods
Time varying systems
Eigenvalues and eigenfunctions
description We investigate the properties of the semiclassical short periodic orbit approach for the study of open quantum maps that was recently introduced. We provide solid numerical evidence, for the paradigmatic systems of the open baker and cat maps, that by using this approach the dimensionality of the eigenvalue problem is reduced according to the fractal Weyl law. The method also reproduces the projectors ψnR ψnL , which involves the right and left states associated with a given eigenvalue and is supported on the classical phase-space repeller. © 2012 American Physical Society.
format JOUR
author Pedrosa, J.M.
Wisniacki, D.
Carlo, G.G.
Novaes, M.
author_facet Pedrosa, J.M.
Wisniacki, D.
Carlo, G.G.
Novaes, M.
author_sort Pedrosa, J.M.
title Short periodic orbit approach to resonances and the fractal Weyl law
title_short Short periodic orbit approach to resonances and the fractal Weyl law
title_full Short periodic orbit approach to resonances and the fractal Weyl law
title_fullStr Short periodic orbit approach to resonances and the fractal Weyl law
title_full_unstemmed Short periodic orbit approach to resonances and the fractal Weyl law
title_sort short periodic orbit approach to resonances and the fractal weyl law
url http://hdl.handle.net/20.500.12110/paper_15393755_v85_n3_p_Pedrosa
work_keys_str_mv AT pedrosajm shortperiodicorbitapproachtoresonancesandthefractalweyllaw
AT wisniackid shortperiodicorbitapproachtoresonancesandthefractalweyllaw
AT carlogg shortperiodicorbitapproachtoresonancesandthefractalweyllaw
AT novaesm shortperiodicorbitapproachtoresonancesandthefractalweyllaw
_version_ 1807323136029360128