Imaging molecular interactions in living cells by FRET microscopy

Förster resonance energy transfer (FRET) is applied extensively in all fields of biological research and technology, generally as a 'nanoruler' with a dynamic range corresponding to the intramolecular and intermolecular distances characterizing the molecular structures that regulate cellul...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jares-Erijman, E.A., Jovin, T.M.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_13675931_v10_n5_p409_JaresErijman
Aporte de:
Descripción
Sumario:Förster resonance energy transfer (FRET) is applied extensively in all fields of biological research and technology, generally as a 'nanoruler' with a dynamic range corresponding to the intramolecular and intermolecular distances characterizing the molecular structures that regulate cellular function. The complex underlying network of interactions reflects elementary reactions operating under strict spatio-temporal control: binding, conformational transition, covalent modification and transport. FRET imaging provides information about all these molecular processes with high specificity and sensitivity via probes expressed by or introduced from the external medium into the cell, tissue or organism. Current approaches and developments in the field are discussed with emphasis on formalism, probes and technical implementation. © 2006 Elsevier Ltd. All rights reserved.