Uniform stability of the ball with respect to the first dirichlet and neumann ∞-eigenvalues
In this note we analyze how perturbations of a ball Br ⊂ ℝn behaves in terms of their first (non-trivial) Neumann and Dirichlet ∞-eigenvalues when a volume constraint Ln(Ω) = Ln(Br) is imposed. Our main result states that Ω is uniformly close to a ball when it has first Neumann and Dirichlet eigenva...
Guardado en:
Autores principales: | Da Silva, J.V., Rossi, J.D., Salort, A.M. |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_10726691_v2018_n_p_DaSilva |
Aporte de: |
Ejemplares similares
-
Uniform stability of the ball with respect to the first dirichlet and neumann ∞-eigenvalues
Publicado: (2018) -
The first non-zero Neumann p-fractional eigenvalue
por: Del Pezzo, L.M., et al. -
Quasilinear eigenvalues
por: Fernández Bonder, J., et al. -
The first nontrivial eigenvalue for a system of p-Laplacians with Neumann and Dirichlet boundary conditions
por: Del Pezzo, L.M., et al. -
The first non-zero Neumann p-fractional eigenvalue
por: Del Pezzo, Leandro M., et al.
Publicado: (2015)