Uniform stability of the ball with respect to the first dirichlet and neumann ∞-eigenvalues

In this note we analyze how perturbations of a ball Br ⊂ ℝn behaves in terms of their first (non-trivial) Neumann and Dirichlet ∞-eigenvalues when a volume constraint Ln(Ω) = Ln(Br) is imposed. Our main result states that Ω is uniformly close to a ball when it has first Neumann and Dirichlet eigenva...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Da Silva, J.V., Rossi, J.D., Salort, A.M.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_10726691_v2018_n_p_DaSilva
Aporte de:
id todo:paper_10726691_v2018_n_p_DaSilva
record_format dspace
spelling todo:paper_10726691_v2018_n_p_DaSilva2023-10-03T16:02:51Z Uniform stability of the ball with respect to the first dirichlet and neumann ∞-eigenvalues Da Silva, J.V. Rossi, J.D. Salort, A.M. Approximation of domains ∞-eigenvalue problem ∞-eigenvalues estimates In this note we analyze how perturbations of a ball Br ⊂ ℝn behaves in terms of their first (non-trivial) Neumann and Dirichlet ∞-eigenvalues when a volume constraint Ln(Ω) = Ln(Br) is imposed. Our main result states that Ω is uniformly close to a ball when it has first Neumann and Dirichlet eigenvalues close to the ones for the ball of the same volume Br. In fact, we show that, if (Formula presented) then there are two balls such that (Formula presented) In addition, we obtain a result concerning stability of the Dirichlet ∞-eigenfunctions. © 2018 Texas State University. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_10726691_v2018_n_p_DaSilva
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Approximation of domains
∞-eigenvalue problem
∞-eigenvalues estimates
spellingShingle Approximation of domains
∞-eigenvalue problem
∞-eigenvalues estimates
Da Silva, J.V.
Rossi, J.D.
Salort, A.M.
Uniform stability of the ball with respect to the first dirichlet and neumann ∞-eigenvalues
topic_facet Approximation of domains
∞-eigenvalue problem
∞-eigenvalues estimates
description In this note we analyze how perturbations of a ball Br ⊂ ℝn behaves in terms of their first (non-trivial) Neumann and Dirichlet ∞-eigenvalues when a volume constraint Ln(Ω) = Ln(Br) is imposed. Our main result states that Ω is uniformly close to a ball when it has first Neumann and Dirichlet eigenvalues close to the ones for the ball of the same volume Br. In fact, we show that, if (Formula presented) then there are two balls such that (Formula presented) In addition, we obtain a result concerning stability of the Dirichlet ∞-eigenfunctions. © 2018 Texas State University.
format JOUR
author Da Silva, J.V.
Rossi, J.D.
Salort, A.M.
author_facet Da Silva, J.V.
Rossi, J.D.
Salort, A.M.
author_sort Da Silva, J.V.
title Uniform stability of the ball with respect to the first dirichlet and neumann ∞-eigenvalues
title_short Uniform stability of the ball with respect to the first dirichlet and neumann ∞-eigenvalues
title_full Uniform stability of the ball with respect to the first dirichlet and neumann ∞-eigenvalues
title_fullStr Uniform stability of the ball with respect to the first dirichlet and neumann ∞-eigenvalues
title_full_unstemmed Uniform stability of the ball with respect to the first dirichlet and neumann ∞-eigenvalues
title_sort uniform stability of the ball with respect to the first dirichlet and neumann ∞-eigenvalues
url http://hdl.handle.net/20.500.12110/paper_10726691_v2018_n_p_DaSilva
work_keys_str_mv AT dasilvajv uniformstabilityoftheballwithrespecttothefirstdirichletandneumanneigenvalues
AT rossijd uniformstabilityoftheballwithrespecttothefirstdirichletandneumanneigenvalues
AT salortam uniformstabilityoftheballwithrespecttothefirstdirichletandneumanneigenvalues
_version_ 1807320921808044032