The discrete compactness property for anisotropic edge elements on polyhedral domains

We prove the discrete compactness property of the edge elements of any order on a class of anisotropically refined meshes on polyhedral domains. The meshes, made up of tetrahedra, have been introduced in [Th. Apel and S. Nicaise, Math. Meth. Appl. Sci. 21 (1998) 519—549]. They are appropriately grad...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Lombardi, A.L.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_0764583X_v47_n1_p169_Lombardi
Aporte de:
Descripción
Sumario:We prove the discrete compactness property of the edge elements of any order on a class of anisotropically refined meshes on polyhedral domains. The meshes, made up of tetrahedra, have been introduced in [Th. Apel and S. Nicaise, Math. Meth. Appl. Sci. 21 (1998) 519—549]. They are appropriately graded near singular corners and edges of the polyhedron. © EDP Sciences, SMAI 2013.