The discrete compactness property for anisotropic edge elements on polyhedral domains
We prove the discrete compactness property of the edge elements of any order on a class of anisotropically refined meshes on polyhedral domains. The meshes, made up of tetrahedra, have been introduced in [Th. Apel and S. Nicaise, Math. Meth. Appl. Sci. 21 (1998) 519—549]. They are appropriately grad...
Guardado en:
Autor principal: | |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_0764583X_v47_n1_p169_Lombardi |
Aporte de: |
id |
todo:paper_0764583X_v47_n1_p169_Lombardi |
---|---|
record_format |
dspace |
spelling |
todo:paper_0764583X_v47_n1_p169_Lombardi2023-10-03T15:39:41Z The discrete compactness property for anisotropic edge elements on polyhedral domains Lombardi, A.L. Anisotropic finite elements Discrete compactness property Edge elements Maxwell equations We prove the discrete compactness property of the edge elements of any order on a class of anisotropically refined meshes on polyhedral domains. The meshes, made up of tetrahedra, have been introduced in [Th. Apel and S. Nicaise, Math. Meth. Appl. Sci. 21 (1998) 519—549]. They are appropriately graded near singular corners and edges of the polyhedron. © EDP Sciences, SMAI 2013. Fil:Lombardi, A.L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_0764583X_v47_n1_p169_Lombardi |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Anisotropic finite elements Discrete compactness property Edge elements Maxwell equations |
spellingShingle |
Anisotropic finite elements Discrete compactness property Edge elements Maxwell equations Lombardi, A.L. The discrete compactness property for anisotropic edge elements on polyhedral domains |
topic_facet |
Anisotropic finite elements Discrete compactness property Edge elements Maxwell equations |
description |
We prove the discrete compactness property of the edge elements of any order on a class of anisotropically refined meshes on polyhedral domains. The meshes, made up of tetrahedra, have been introduced in [Th. Apel and S. Nicaise, Math. Meth. Appl. Sci. 21 (1998) 519—549]. They are appropriately graded near singular corners and edges of the polyhedron. © EDP Sciences, SMAI 2013. |
format |
JOUR |
author |
Lombardi, A.L. |
author_facet |
Lombardi, A.L. |
author_sort |
Lombardi, A.L. |
title |
The discrete compactness property for anisotropic edge elements on polyhedral domains |
title_short |
The discrete compactness property for anisotropic edge elements on polyhedral domains |
title_full |
The discrete compactness property for anisotropic edge elements on polyhedral domains |
title_fullStr |
The discrete compactness property for anisotropic edge elements on polyhedral domains |
title_full_unstemmed |
The discrete compactness property for anisotropic edge elements on polyhedral domains |
title_sort |
discrete compactness property for anisotropic edge elements on polyhedral domains |
url |
http://hdl.handle.net/20.500.12110/paper_0764583X_v47_n1_p169_Lombardi |
work_keys_str_mv |
AT lombardial thediscretecompactnesspropertyforanisotropicedgeelementsonpolyhedraldomains AT lombardial discretecompactnesspropertyforanisotropicedgeelementsonpolyhedraldomains |
_version_ |
1807316996082106368 |