Fleming-Viot selects the minimal quasi-stationary distribution: The Galton-Watson case
Consider N particles moving independently, each one according to a subcritical continuous-time Galton-Watson process unless it hits 0, at which time it jumps instantaneously to the position of one of the other particles chosen uniformly at random. The resulting dynamics is called Fleming-Viot proces...
Guardado en:
Autores principales: | Ferrari, Pablo Augusto, Groisman, Pablo Jose, Jonckheere, Matthieu Thimothy Samson |
---|---|
Publicado: |
2016
|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_02460203_v52_n2_p647_Asselah http://hdl.handle.net/20.500.12110/paper_02460203_v52_n2_p647_Asselah |
Aporte de: |
Ejemplares similares
-
Fleming-Viot selects the minimal quasi-stationary distribution: The Galton-Watson case
por: Asselah, A., et al. -
Simulation of Quasi-stationary distributions on countable spaces
por: Groisman, Pablo Jose, et al.
Publicado: (2013) -
Simulation of Quasi-stationary distributions on countable spaces
por: Groisman, P., et al. -
Quasistationary distributions and fleming-viot processes in finite spaces
por: Ferrari, Pablo Augusto, et al.
Publicado: (2011) -
Quasistationary distributions and fleming-viot processes in finite spaces
por: Asselah, A., et al.