Fleming-Viot selects the minimal quasi-stationary distribution: The Galton-Watson case

Consider N particles moving independently, each one according to a subcritical continuous-time Galton-Watson process unless it hits 0, at which time it jumps instantaneously to the position of one of the other particles chosen uniformly at random. The resulting dynamics is called Fleming-Viot proces...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ferrari, Pablo Augusto, Groisman, Pablo Jose, Jonckheere, Matthieu Thimothy Samson
Publicado: 2016
Materias:
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_02460203_v52_n2_p647_Asselah
http://hdl.handle.net/20.500.12110/paper_02460203_v52_n2_p647_Asselah
Aporte de:
id paper:paper_02460203_v52_n2_p647_Asselah
record_format dspace
spelling paper:paper_02460203_v52_n2_p647_Asselah2023-06-08T15:21:52Z Fleming-Viot selects the minimal quasi-stationary distribution: The Galton-Watson case Ferrari, Pablo Augusto Groisman, Pablo Jose Jonckheere, Matthieu Thimothy Samson Fleming-Viot processes Galton-Watson processes Quasi-stationary distributions Selection principle Consider N particles moving independently, each one according to a subcritical continuous-time Galton-Watson process unless it hits 0, at which time it jumps instantaneously to the position of one of the other particles chosen uniformly at random. The resulting dynamics is called Fleming-Viot process. We show that for each N there exists a unique invariant measure for the Fleming-Viot process, and that its stationary empirical distribution converges, as N goes to infinity, to the minimal quasi-stationary distribution of the Galton-Watson process conditioned on non-extinction. © Association des Publications de l'Institut Henri Poincaré, 2016. Fil:Ferrari, P.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Groisman, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Jonckheere, M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2016 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_02460203_v52_n2_p647_Asselah http://hdl.handle.net/20.500.12110/paper_02460203_v52_n2_p647_Asselah
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Fleming-Viot processes
Galton-Watson processes
Quasi-stationary distributions
Selection principle
spellingShingle Fleming-Viot processes
Galton-Watson processes
Quasi-stationary distributions
Selection principle
Ferrari, Pablo Augusto
Groisman, Pablo Jose
Jonckheere, Matthieu Thimothy Samson
Fleming-Viot selects the minimal quasi-stationary distribution: The Galton-Watson case
topic_facet Fleming-Viot processes
Galton-Watson processes
Quasi-stationary distributions
Selection principle
description Consider N particles moving independently, each one according to a subcritical continuous-time Galton-Watson process unless it hits 0, at which time it jumps instantaneously to the position of one of the other particles chosen uniformly at random. The resulting dynamics is called Fleming-Viot process. We show that for each N there exists a unique invariant measure for the Fleming-Viot process, and that its stationary empirical distribution converges, as N goes to infinity, to the minimal quasi-stationary distribution of the Galton-Watson process conditioned on non-extinction. © Association des Publications de l'Institut Henri Poincaré, 2016.
author Ferrari, Pablo Augusto
Groisman, Pablo Jose
Jonckheere, Matthieu Thimothy Samson
author_facet Ferrari, Pablo Augusto
Groisman, Pablo Jose
Jonckheere, Matthieu Thimothy Samson
author_sort Ferrari, Pablo Augusto
title Fleming-Viot selects the minimal quasi-stationary distribution: The Galton-Watson case
title_short Fleming-Viot selects the minimal quasi-stationary distribution: The Galton-Watson case
title_full Fleming-Viot selects the minimal quasi-stationary distribution: The Galton-Watson case
title_fullStr Fleming-Viot selects the minimal quasi-stationary distribution: The Galton-Watson case
title_full_unstemmed Fleming-Viot selects the minimal quasi-stationary distribution: The Galton-Watson case
title_sort fleming-viot selects the minimal quasi-stationary distribution: the galton-watson case
publishDate 2016
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_02460203_v52_n2_p647_Asselah
http://hdl.handle.net/20.500.12110/paper_02460203_v52_n2_p647_Asselah
work_keys_str_mv AT ferraripabloaugusto flemingviotselectstheminimalquasistationarydistributionthegaltonwatsoncase
AT groismanpablojose flemingviotselectstheminimalquasistationarydistributionthegaltonwatsoncase
AT jonckheerematthieuthimothysamson flemingviotselectstheminimalquasistationarydistributionthegaltonwatsoncase
_version_ 1768542936809603072