Simple and fast gradient-based impedance inversion using total variation regularization

We present an algorithm to estimate blocky images of the subsurface acoustic impedance (AI) from poststack seismic data. We regularize the resulting inverse problem, which is inherently ill-posed and non-unique, by means of the total variation semi-norm (TV). This allows us promote stable and blocky...

Descripción completa

Detalles Bibliográficos
Autores principales: Pérez, Daniel Omar, Velis, Danilo Rubén
Formato: Articulo
Lenguaje:Inglés
Publicado: 2018
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/98098
https://ri.conicet.gov.ar/11336/84630
http://www.geophysical-press.com/online/VOL27-5-Art4.pdf
Aporte de:
id I19-R120-10915-98098
record_format dspace
institution Universidad Nacional de La Plata
institution_str I-19
repository_str R-120
collection SEDICI (UNLP)
language Inglés
topic Ciencias Naturales
Total variation
Acoustic impedance
Inversion
Seismic
Poststack
Blocky
FISTA
spellingShingle Ciencias Naturales
Total variation
Acoustic impedance
Inversion
Seismic
Poststack
Blocky
FISTA
Pérez, Daniel Omar
Velis, Danilo Rubén
Simple and fast gradient-based impedance inversion using total variation regularization
topic_facet Ciencias Naturales
Total variation
Acoustic impedance
Inversion
Seismic
Poststack
Blocky
FISTA
description We present an algorithm to estimate blocky images of the subsurface acoustic impedance (AI) from poststack seismic data. We regularize the resulting inverse problem, which is inherently ill-posed and non-unique, by means of the total variation semi-norm (TV). This allows us promote stable and blocky solutions which are, by virtue of the capability of TV to handle edges properly, adequate to model layered earth models with sharp contrasts. The use of the TV leads to a convex objective function easily minimized using a gradient-based algorithm that requires, in contrast to other AI inversion methods based on TV regularization, simple matrix-vector multiplications and no direct matrix inversion. The latter makes the algorithm numerically stable, easy to apply, and economic in terms of computational cost. Tests on synthetic and field data show that the proposed method, contrarily to conventional l<sub>2</sub>- or l<sub>1</sub>-norm regularized solutions, is able to provide blocky AI images that preserve the subsurface layered structure with good lateral continuity from noisy observations.
format Articulo
Articulo
author Pérez, Daniel Omar
Velis, Danilo Rubén
author_facet Pérez, Daniel Omar
Velis, Danilo Rubén
author_sort Pérez, Daniel Omar
title Simple and fast gradient-based impedance inversion using total variation regularization
title_short Simple and fast gradient-based impedance inversion using total variation regularization
title_full Simple and fast gradient-based impedance inversion using total variation regularization
title_fullStr Simple and fast gradient-based impedance inversion using total variation regularization
title_full_unstemmed Simple and fast gradient-based impedance inversion using total variation regularization
title_sort simple and fast gradient-based impedance inversion using total variation regularization
publishDate 2018
url http://sedici.unlp.edu.ar/handle/10915/98098
https://ri.conicet.gov.ar/11336/84630
http://www.geophysical-press.com/online/VOL27-5-Art4.pdf
work_keys_str_mv AT perezdanielomar simpleandfastgradientbasedimpedanceinversionusingtotalvariationregularization
AT velisdaniloruben simpleandfastgradientbasedimpedanceinversionusingtotalvariationregularization
bdutipo_str Repositorios
_version_ 1764820492620922880