Magnetic field decay in black widow pulsars

We study in this work the evolution of the magnetic field in 'redback-black widow' pulsars. Evolutionary calculations of these 'spider' systems suggest that first the accretion operates in the redback stage, and later the companion star ablates matter due to winds from the recycl...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Mendes, Camile, de Avellar, Marcio G. B., Horvath, J. E., Souza, Rodrigo A. de, Benvenuto, Omar Gustavo, De Vito, María Alejandra
Formato: Articulo
Lenguaje:Inglés
Publicado: 2018
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/93685
https://academic.oup.com/mnras/article/475/2/2178/4817548
Aporte de:
id I19-R120-10915-93685
record_format dspace
institution Universidad Nacional de La Plata
institution_str I-19
repository_str R-120
collection SEDICI (UNLP)
language Inglés
topic Ciencias Astronómicas
Accretion discs
Magnetic field
Stars: neutron
spellingShingle Ciencias Astronómicas
Accretion discs
Magnetic field
Stars: neutron
Mendes, Camile
de Avellar, Marcio G. B.
Horvath, J. E.
Souza, Rodrigo A. de
Benvenuto, Omar Gustavo
De Vito, María Alejandra
Magnetic field decay in black widow pulsars
topic_facet Ciencias Astronómicas
Accretion discs
Magnetic field
Stars: neutron
description We study in this work the evolution of the magnetic field in 'redback-black widow' pulsars. Evolutionary calculations of these 'spider' systems suggest that first the accretion operates in the redback stage, and later the companion star ablates matter due to winds from the recycled pulsar. It is generally believed that mass accretion by the pulsar results in a rapid decay of the magnetic field when compared to the rate of an isolated neutron star. We study the evolution of the magnetic field in black widow pulsars by solving numerically the induction equation using the modified Crank-Nicolson method with intermittent episodes of mass accretion on to the neutron star. Our results show that the magnetic field does not fall below a minimum value ('bottom field') in spite of the long evolution time of the black widow systems, extending the previous conclusions for much younger low-mass X-ray binary systems. We find that in this scenario, the magnetic field decay is dominated by the accretion rate, and that the existence of a bottom field is likely related to the fact that the surface temperature of the pulsar does not decay as predicted by the current cooling models. We also observe that the impurity of the pulsar crust is not a dominant factor in the decay of magnetic field for the long evolution time of black widow systems.
format Articulo
Articulo
author Mendes, Camile
de Avellar, Marcio G. B.
Horvath, J. E.
Souza, Rodrigo A. de
Benvenuto, Omar Gustavo
De Vito, María Alejandra
author_facet Mendes, Camile
de Avellar, Marcio G. B.
Horvath, J. E.
Souza, Rodrigo A. de
Benvenuto, Omar Gustavo
De Vito, María Alejandra
author_sort Mendes, Camile
title Magnetic field decay in black widow pulsars
title_short Magnetic field decay in black widow pulsars
title_full Magnetic field decay in black widow pulsars
title_fullStr Magnetic field decay in black widow pulsars
title_full_unstemmed Magnetic field decay in black widow pulsars
title_sort magnetic field decay in black widow pulsars
publishDate 2018
url http://sedici.unlp.edu.ar/handle/10915/93685
https://academic.oup.com/mnras/article/475/2/2178/4817548
work_keys_str_mv AT mendescamile magneticfielddecayinblackwidowpulsars
AT deavellarmarciogb magneticfielddecayinblackwidowpulsars
AT horvathje magneticfielddecayinblackwidowpulsars
AT souzarodrigoade magneticfielddecayinblackwidowpulsars
AT benvenutoomargustavo magneticfielddecayinblackwidowpulsars
AT devitomariaalejandra magneticfielddecayinblackwidowpulsars
bdutipo_str Repositorios
_version_ 1764820491587026944