Numerical experiments of fracture-induced velocity and attenuation anisotropy

Fractures are common in the Earth's crust due to different factors, for instance, tectonic stresses and natural or artificial hydraulic fracturing caused by a pressurized fluid. A dense set of fractures behaves as an effective long-wavelength anisotropic medium, leading to azimuthally varying v...

Descripción completa

Detalles Bibliográficos
Autores principales: Carcione, J. M., Picotti, S., Santos, Juan Enrique
Formato: Articulo
Lenguaje:Inglés
Publicado: 2012
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/87838
Aporte de:
id I19-R120-10915-87838
record_format dspace
institution Universidad Nacional de La Plata
institution_str I-19
repository_str R-120
collection SEDICI (UNLP)
language Inglés
topic Ciencias Astronómicas
Fractures and faults
Numerical solutions
Seismic anisotropy
Seismic attenuation
Wave propagation
spellingShingle Ciencias Astronómicas
Fractures and faults
Numerical solutions
Seismic anisotropy
Seismic attenuation
Wave propagation
Carcione, J. M.
Picotti, S.
Santos, Juan Enrique
Numerical experiments of fracture-induced velocity and attenuation anisotropy
topic_facet Ciencias Astronómicas
Fractures and faults
Numerical solutions
Seismic anisotropy
Seismic attenuation
Wave propagation
description Fractures are common in the Earth's crust due to different factors, for instance, tectonic stresses and natural or artificial hydraulic fracturing caused by a pressurized fluid. A dense set of fractures behaves as an effective long-wavelength anisotropic medium, leading to azimuthally varying velocity and attenuation of seismic waves. Effective in this case means that the predominant wavelength is much longer than the fracture spacing. Here, fractures are represented by surface discontinuities in the displacement u and particle velocity v as [κ · u + η · v], where the brackets denote the discontinuity across the surface, κ is a fracture stiffness and η is a fracture viscosity. We consider an isotropic background medium, where a set of fractures are embedded. There exists an analytical solution-with five stiffness components-for equispaced plane fractures and an homogeneous background medium. The theory predicts that the equivalent medium is transversely isotropic and viscoelastic. We then perform harmonic numerical experiments to compute the stiffness components as a function of frequency, by using a Galerkin finite-element procedure, and obtain the complex velocities of the medium as a function of frequency and propagation direction, which provide the phase velocities, energy velocities (wavefronts) and quality factors. The algorithm is tested with the analytical solution and then used to obtain the stiffness components for general heterogeneous cases, where fractal variations of the fracture compliances and background stiffnesses are considered.
format Articulo
Articulo
author Carcione, J. M.
Picotti, S.
Santos, Juan Enrique
author_facet Carcione, J. M.
Picotti, S.
Santos, Juan Enrique
author_sort Carcione, J. M.
title Numerical experiments of fracture-induced velocity and attenuation anisotropy
title_short Numerical experiments of fracture-induced velocity and attenuation anisotropy
title_full Numerical experiments of fracture-induced velocity and attenuation anisotropy
title_fullStr Numerical experiments of fracture-induced velocity and attenuation anisotropy
title_full_unstemmed Numerical experiments of fracture-induced velocity and attenuation anisotropy
title_sort numerical experiments of fracture-induced velocity and attenuation anisotropy
publishDate 2012
url http://sedici.unlp.edu.ar/handle/10915/87838
work_keys_str_mv AT carcionejm numericalexperimentsoffractureinducedvelocityandattenuationanisotropy
AT picottis numericalexperimentsoffractureinducedvelocityandattenuationanisotropy
AT santosjuanenrique numericalexperimentsoffractureinducedvelocityandattenuationanisotropy
bdutipo_str Repositorios
_version_ 1764820489431154688