Scanning-tunneling-microscopy study on the growth mode of vapor-deposited gold films

The growth of gold deposits on smooth glass from the vapor phase at 30 nm<sup>−1</sup> s <sup>−1</sup>, 298 K, and incident angle near the substrate normal covering the 30—1000 nm average film thickness (h¯) range is investigated through scanning tunneling microscopy (STM) co...

Descripción completa

Detalles Bibliográficos
Autores principales: Herrasti, Pilar, Ocón, Pilar, Vázquez, Luis, Salvarezza, Roberto Carlos, Vara, J. M., Arvia, Alejandro Jorge
Formato: Articulo
Lenguaje:Inglés
Publicado: 1992
Materias:
Oro
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/83434
Aporte de:
id I19-R120-10915-83434
record_format dspace
institution Universidad Nacional de La Plata
institution_str I-19
repository_str R-120
collection SEDICI (UNLP)
language Inglés
topic Ciencias Exactas
Química
scanning tunneling microscopy
Vapor
Oro
Fractales
Vidrio
electrosorption
spellingShingle Ciencias Exactas
Química
scanning tunneling microscopy
Vapor
Oro
Fractales
Vidrio
electrosorption
Herrasti, Pilar
Ocón, Pilar
Vázquez, Luis
Salvarezza, Roberto Carlos
Vara, J. M.
Arvia, Alejandro Jorge
Scanning-tunneling-microscopy study on the growth mode of vapor-deposited gold films
topic_facet Ciencias Exactas
Química
scanning tunneling microscopy
Vapor
Oro
Fractales
Vidrio
electrosorption
description The growth of gold deposits on smooth glass from the vapor phase at 30 nm<sup>−1</sup> s <sup>−1</sup>, 298 K, and incident angle near the substrate normal covering the 30—1000 nm average film thickness (h¯) range is investigated through scanning tunneling microscopy (STM) complemented with oxygen-adatom electrosorption measurements. The STM images of the deposits reveal a columnar structure resulting from a mechanism involving shadowing and surface diffusion. Quantitative data are obtained directly from STM images. The height distribution <i>N(h)</i> of the interface obeys an <i>N(h)∝ e <sup>−kh</sup></i> relationship. For h¯<500 nm, the interface thickness (ξ) increases as a power law with h¯, whereas for h¯ > 500 nm it reaches a steady state. Under the latter condition, ξ depends on the STM scan length (S) as ξ∝ S<sup>α</sup> with a close to 1/3. These results indicate that the growth process of the gold deposits results in compact nonfractal structures with self-affine fractal surfaces, as predicted by ballistic deposition models. However, the latter fail to describe some aspects of the morphology and evolution of thin vapor-deposited gold films on this substrate.
format Articulo
Articulo
author Herrasti, Pilar
Ocón, Pilar
Vázquez, Luis
Salvarezza, Roberto Carlos
Vara, J. M.
Arvia, Alejandro Jorge
author_facet Herrasti, Pilar
Ocón, Pilar
Vázquez, Luis
Salvarezza, Roberto Carlos
Vara, J. M.
Arvia, Alejandro Jorge
author_sort Herrasti, Pilar
title Scanning-tunneling-microscopy study on the growth mode of vapor-deposited gold films
title_short Scanning-tunneling-microscopy study on the growth mode of vapor-deposited gold films
title_full Scanning-tunneling-microscopy study on the growth mode of vapor-deposited gold films
title_fullStr Scanning-tunneling-microscopy study on the growth mode of vapor-deposited gold films
title_full_unstemmed Scanning-tunneling-microscopy study on the growth mode of vapor-deposited gold films
title_sort scanning-tunneling-microscopy study on the growth mode of vapor-deposited gold films
publishDate 1992
url http://sedici.unlp.edu.ar/handle/10915/83434
work_keys_str_mv AT herrastipilar scanningtunnelingmicroscopystudyonthegrowthmodeofvapordepositedgoldfilms
AT oconpilar scanningtunnelingmicroscopystudyonthegrowthmodeofvapordepositedgoldfilms
AT vazquezluis scanningtunnelingmicroscopystudyonthegrowthmodeofvapordepositedgoldfilms
AT salvarezzarobertocarlos scanningtunnelingmicroscopystudyonthegrowthmodeofvapordepositedgoldfilms
AT varajm scanningtunnelingmicroscopystudyonthegrowthmodeofvapordepositedgoldfilms
AT arviaalejandrojorge scanningtunnelingmicroscopystudyonthegrowthmodeofvapordepositedgoldfilms
bdutipo_str Repositorios
_version_ 1764820488614313988