Aplicación de un modelo de red neuronal para la clasificación de sistemas lacunares pampeanos

The pampean shallow lakes present different distributions in their trophic chains, the latter being cause and consequence of the state of the lacunar systems. In order to determine how each of the measured variables —climatic, edaphic, morphometric, physicochemical and biological— in contributes to...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ferrati, R., Vargas Russo, M., Saavedra, P., Canziani, G.
Formato: Articulo
Lenguaje:Español
Publicado: 2006
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/69431
Aporte de:
id I19-R120-10915-69431
record_format dspace
institution Universidad Nacional de La Plata
institution_str I-19
repository_str R-120
collection SEDICI (UNLP)
language Español
topic Ciencias Naturales
lagos
redes neuronales
artificial neural network, satellite images, trophic chain
spellingShingle Ciencias Naturales
lagos
redes neuronales
artificial neural network, satellite images, trophic chain
Ferrati, R.
Vargas Russo, M.
Saavedra, P.
Canziani, G.
Aplicación de un modelo de red neuronal para la clasificación de sistemas lacunares pampeanos
topic_facet Ciencias Naturales
lagos
redes neuronales
artificial neural network, satellite images, trophic chain
description The pampean shallow lakes present different distributions in their trophic chains, the latter being cause and consequence of the state of the lacunar systems. In order to determine how each of the measured variables —climatic, edaphic, morphometric, physicochemical and biological— in contributes to the general state of the lake, an Artificial Neural Network (ANN) model is built. The ANN is capable of processing a large number of variables and returning a classification that will allow determining it’s the trophic state. The information from satellite images is one of the input variables. Hence, on a first stage, the construction of a ANN model is intended to obtain a weight for each one of the visible specter bands and near infrared bands from LANDSAT and to pick the most representative value that the image returns. This value will be used as input to the ANN that will be then trained to return a classification of the shallow lakes according to the three observed patterns in the relation between phytoplankton, zooplankton, fish and their link with to nutrient abundance and watershed management.
format Articulo
Articulo
author Ferrati, R.
Vargas Russo, M.
Saavedra, P.
Canziani, G.
author_facet Ferrati, R.
Vargas Russo, M.
Saavedra, P.
Canziani, G.
author_sort Ferrati, R.
title Aplicación de un modelo de red neuronal para la clasificación de sistemas lacunares pampeanos
title_short Aplicación de un modelo de red neuronal para la clasificación de sistemas lacunares pampeanos
title_full Aplicación de un modelo de red neuronal para la clasificación de sistemas lacunares pampeanos
title_fullStr Aplicación de un modelo de red neuronal para la clasificación de sistemas lacunares pampeanos
title_full_unstemmed Aplicación de un modelo de red neuronal para la clasificación de sistemas lacunares pampeanos
title_sort aplicación de un modelo de red neuronal para la clasificación de sistemas lacunares pampeanos
publishDate 2006
url http://sedici.unlp.edu.ar/handle/10915/69431
work_keys_str_mv AT ferratir aplicaciondeunmodeloderedneuronalparalaclasificaciondesistemaslacunarespampeanos
AT vargasrussom aplicaciondeunmodeloderedneuronalparalaclasificaciondesistemaslacunarespampeanos
AT saavedrap aplicaciondeunmodeloderedneuronalparalaclasificaciondesistemaslacunarespampeanos
AT canzianig aplicaciondeunmodeloderedneuronalparalaclasificaciondesistemaslacunarespampeanos
bdutipo_str Repositorios
_version_ 1764820482308177921