Genetic algorithms for topical web search: A study of different mutation rates

Harvesting topical content is a process that can be done by formulating topic-relevant queries and submitting them to a search engine. The quality of the material collected through this process is highly dependant on the vocabulary used to generate the search queries. In this scenario, selecting goo...

Descripción completa

Detalles Bibliográficos
Autores principales: Cecchini, Rocío L., Lorenzetti, Carlos M., Maguitman, Ana Gabriela, Brignole, Nélida B.
Formato: Objeto de conferencia
Lenguaje:Inglés
Publicado: 2007
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/23579
Aporte de:
id I19-R120-10915-23579
record_format dspace
institution Universidad Nacional de La Plata
institution_str I-19
repository_str R-120
collection SEDICI (UNLP)
language Inglés
topic Ciencias Informáticas
Informática
Information Search and Retrieval
Search process
Query processing
topical web search
genetic algorithms
query formulation
query optimization
spellingShingle Ciencias Informáticas
Informática
Information Search and Retrieval
Search process
Query processing
topical web search
genetic algorithms
query formulation
query optimization
Cecchini, Rocío L.
Lorenzetti, Carlos M.
Maguitman, Ana Gabriela
Brignole, Nélida B.
Genetic algorithms for topical web search: A study of different mutation rates
topic_facet Ciencias Informáticas
Informática
Information Search and Retrieval
Search process
Query processing
topical web search
genetic algorithms
query formulation
query optimization
description Harvesting topical content is a process that can be done by formulating topic-relevant queries and submitting them to a search engine. The quality of the material collected through this process is highly dependant on the vocabulary used to generate the search queries. In this scenario, selecting good query terms can be seen as an optimization problem where the objective function to be optimized is based on the effectiveness of a query to retrieve relevant material. Three characteristics of this optimization problem are (1) the high-dimensionality of the search space, where candidate solutions are queries and each term corresponds to a different dimension, (2) the existence of acceptable suboptimal solutions, and (3) the possibility of finding multiple solutions. This paper describes optimization techniques based on Genetic Algorithms to evolve “good query terms” in the context of a given topic. We discuss the use of a mutation pool to allow the generation of queries with novel terms, and study the effect of different mutation rates on the exploration of query-space.
format Objeto de conferencia
Objeto de conferencia
author Cecchini, Rocío L.
Lorenzetti, Carlos M.
Maguitman, Ana Gabriela
Brignole, Nélida B.
author_facet Cecchini, Rocío L.
Lorenzetti, Carlos M.
Maguitman, Ana Gabriela
Brignole, Nélida B.
author_sort Cecchini, Rocío L.
title Genetic algorithms for topical web search: A study of different mutation rates
title_short Genetic algorithms for topical web search: A study of different mutation rates
title_full Genetic algorithms for topical web search: A study of different mutation rates
title_fullStr Genetic algorithms for topical web search: A study of different mutation rates
title_full_unstemmed Genetic algorithms for topical web search: A study of different mutation rates
title_sort genetic algorithms for topical web search: a study of different mutation rates
publishDate 2007
url http://sedici.unlp.edu.ar/handle/10915/23579
work_keys_str_mv AT cecchinirociol geneticalgorithmsfortopicalwebsearchastudyofdifferentmutationrates
AT lorenzetticarlosm geneticalgorithmsfortopicalwebsearchastudyofdifferentmutationrates
AT maguitmananagabriela geneticalgorithmsfortopicalwebsearchastudyofdifferentmutationrates
AT brignolenelidab geneticalgorithmsfortopicalwebsearchastudyofdifferentmutationrates
bdutipo_str Repositorios
_version_ 1764820465924177920