Parameter control in multirecombinated evolutionary algorithms for the flow shop scheduling problem

Improvements in evolutionary algorithms (EAs) consider multirecombination, allowing multiple crossover operations on a pair of parents (MCPC, multiple crossovers per couple) or on a set of multiple parents (MCMP, multiple crossovers on multiple parents). Evolutionary algorithms have been successfull...

Descripción completa

Detalles Bibliográficos
Autores principales: Vilanova, Gabriela, Villagra, Andrea, Pandolfi, Daniel, San Pedro, María Eugenia de, Gallard, Raúl Hector
Formato: Objeto de conferencia
Lenguaje:Inglés
Publicado: 2001
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/23420
Aporte de:
id I19-R120-10915-23420
record_format dspace
institution Universidad Nacional de La Plata
institution_str I-19
repository_str R-120
collection SEDICI (UNLP)
language Inglés
topic Ciencias Informáticas
Algorithms
Scheduling
ARTIFICIAL INTELLIGENCE
Evolutionary algorithms
Multiple Crossovers
Multiple Parents
Parameter Control.
spellingShingle Ciencias Informáticas
Algorithms
Scheduling
ARTIFICIAL INTELLIGENCE
Evolutionary algorithms
Multiple Crossovers
Multiple Parents
Parameter Control.
Vilanova, Gabriela
Villagra, Andrea
Pandolfi, Daniel
San Pedro, María Eugenia de
Gallard, Raúl Hector
Parameter control in multirecombinated evolutionary algorithms for the flow shop scheduling problem
topic_facet Ciencias Informáticas
Algorithms
Scheduling
ARTIFICIAL INTELLIGENCE
Evolutionary algorithms
Multiple Crossovers
Multiple Parents
Parameter Control.
description Improvements in evolutionary algorithms (EAs) consider multirecombination, allowing multiple crossover operations on a pair of parents (MCPC, multiple crossovers per couple) or on a set of multiple parents (MCMP, multiple crossovers on multiple parents). Evolutionary algorithms have been successfully applied to solve scheduling problems. MCMP-STUD and MCMP-SRI are novel MCMP variants, which considers the inclusion of a stud-breeding individual in a pool of random immigrant parents In this paper the proposal is to generate the stud-breeding individual by means of a robust conventional heuristic, the CDS. In a multirecombined EA, setting of parameters n1 (number of crossovers) and n2 (number of parents) remained as an open question. In previous works; they were empirically determined, or a deterministic rule was applied. In this paper self adaptation of parameters n1 and n2 is implemented, the idea is to code the parameters within the chromosome and undergo genetic operations. Hence it is expected that better parameter values be more intensively propagated. The present paper discusses different multi-recombined methods and contrasts their performance when different parameter control methods are applied, to find the minimum makespan for selected instances of the FSSP.
format Objeto de conferencia
Objeto de conferencia
author Vilanova, Gabriela
Villagra, Andrea
Pandolfi, Daniel
San Pedro, María Eugenia de
Gallard, Raúl Hector
author_facet Vilanova, Gabriela
Villagra, Andrea
Pandolfi, Daniel
San Pedro, María Eugenia de
Gallard, Raúl Hector
author_sort Vilanova, Gabriela
title Parameter control in multirecombinated evolutionary algorithms for the flow shop scheduling problem
title_short Parameter control in multirecombinated evolutionary algorithms for the flow shop scheduling problem
title_full Parameter control in multirecombinated evolutionary algorithms for the flow shop scheduling problem
title_fullStr Parameter control in multirecombinated evolutionary algorithms for the flow shop scheduling problem
title_full_unstemmed Parameter control in multirecombinated evolutionary algorithms for the flow shop scheduling problem
title_sort parameter control in multirecombinated evolutionary algorithms for the flow shop scheduling problem
publishDate 2001
url http://sedici.unlp.edu.ar/handle/10915/23420
work_keys_str_mv AT vilanovagabriela parametercontrolinmultirecombinatedevolutionaryalgorithmsfortheflowshopschedulingproblem
AT villagraandrea parametercontrolinmultirecombinatedevolutionaryalgorithmsfortheflowshopschedulingproblem
AT pandolfidaniel parametercontrolinmultirecombinatedevolutionaryalgorithmsfortheflowshopschedulingproblem
AT sanpedromariaeugeniade parametercontrolinmultirecombinatedevolutionaryalgorithmsfortheflowshopschedulingproblem
AT gallardraulhector parametercontrolinmultirecombinatedevolutionaryalgorithmsfortheflowshopschedulingproblem
bdutipo_str Repositorios
_version_ 1764820465901109251