A study of performance of stochastic universal sampling versus proportional selection on genetic algorithms

Selection mechanisms favour reproduction of better individuals imposing a direction on the search process. According to this it is expected that the effective number of offspring of an individual in the next generation would always agree with the algorithmic sampling frequencies. This does not happe...

Descripción completa

Detalles Bibliográficos
Autores principales: Minetti, Gabriela F., Salto, Carolina, Alfonso, Hugo, Gallard, Raúl Hector
Formato: Objeto de conferencia
Lenguaje:Inglés
Publicado: 1999
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/22220
Aporte de:
id I19-R120-10915-22220
record_format dspace
institution Universidad Nacional de La Plata
institution_str I-19
repository_str R-120
collection SEDICI (UNLP)
language Inglés
topic Ciencias Informáticas
stochastic universal sampling
proportional selection
genetic algorithms
ARTIFICIAL INTELLIGENCE
Algorithms
spellingShingle Ciencias Informáticas
stochastic universal sampling
proportional selection
genetic algorithms
ARTIFICIAL INTELLIGENCE
Algorithms
Minetti, Gabriela F.
Salto, Carolina
Alfonso, Hugo
Gallard, Raúl Hector
A study of performance of stochastic universal sampling versus proportional selection on genetic algorithms
topic_facet Ciencias Informáticas
stochastic universal sampling
proportional selection
genetic algorithms
ARTIFICIAL INTELLIGENCE
Algorithms
description Selection mechanisms favour reproduction of better individuals imposing a direction on the search process. According to this it is expected that the effective number of offspring of an individual in the next generation would always agree with the algorithmic sampling frequencies. This does not happens due to sampling errors. Stochastic universal sampling is a method that tries to remedy this problem. This presentation discusses performance results on evolutionary algorithms optimizing a set of highly multimodal functions and a hard unimodal function, under Proportional selection and stochastic universal sampling. Contrasting results are shown.
format Objeto de conferencia
Objeto de conferencia
author Minetti, Gabriela F.
Salto, Carolina
Alfonso, Hugo
Gallard, Raúl Hector
author_facet Minetti, Gabriela F.
Salto, Carolina
Alfonso, Hugo
Gallard, Raúl Hector
author_sort Minetti, Gabriela F.
title A study of performance of stochastic universal sampling versus proportional selection on genetic algorithms
title_short A study of performance of stochastic universal sampling versus proportional selection on genetic algorithms
title_full A study of performance of stochastic universal sampling versus proportional selection on genetic algorithms
title_fullStr A study of performance of stochastic universal sampling versus proportional selection on genetic algorithms
title_full_unstemmed A study of performance of stochastic universal sampling versus proportional selection on genetic algorithms
title_sort study of performance of stochastic universal sampling versus proportional selection on genetic algorithms
publishDate 1999
url http://sedici.unlp.edu.ar/handle/10915/22220
work_keys_str_mv AT minettigabrielaf astudyofperformanceofstochasticuniversalsamplingversusproportionalselectionongeneticalgorithms
AT saltocarolina astudyofperformanceofstochasticuniversalsamplingversusproportionalselectionongeneticalgorithms
AT alfonsohugo astudyofperformanceofstochasticuniversalsamplingversusproportionalselectionongeneticalgorithms
AT gallardraulhector astudyofperformanceofstochasticuniversalsamplingversusproportionalselectionongeneticalgorithms
AT minettigabrielaf studyofperformanceofstochasticuniversalsamplingversusproportionalselectionongeneticalgorithms
AT saltocarolina studyofperformanceofstochasticuniversalsamplingversusproportionalselectionongeneticalgorithms
AT alfonsohugo studyofperformanceofstochasticuniversalsamplingversusproportionalselectionongeneticalgorithms
AT gallardraulhector studyofperformanceofstochasticuniversalsamplingversusproportionalselectionongeneticalgorithms
bdutipo_str Repositorios
_version_ 1764820465373675521