Calibration of nonlinear variable loads based on manifold learning

In this work, we present a method for calibrating non-linear variable impedances based on the manifold-learning technique. This approach circumvents the dependency on the analytical model of the device, and works under the assumption that the impedance values come from a ”black box” controlled by a...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Venere, Alejandro Javier, Hurtado, Martín, Muravchik, Carlos Horacio
Formato: Objeto de conferencia
Lenguaje:Inglés
Publicado: 2017
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/154145
Aporte de:
id I19-R120-10915-154145
record_format dspace
spelling I19-R120-10915-1541452023-06-09T04:07:31Z http://sedici.unlp.edu.ar/handle/10915/154145 isbn:978-987-544-754-7 Calibration of nonlinear variable loads based on manifold learning Venere, Alejandro Javier Hurtado, Martín Muravchik, Carlos Horacio 2017-09 2017 2023-06-08T17:36:28Z en Ingeniería Diffusion map Manifold learning Variable loads In this work, we present a method for calibrating non-linear variable impedances based on the manifold-learning technique. This approach circumvents the dependency on the analytical model of the device, and works under the assumption that the impedance values come from a ”black box” controlled by a number of independent parameters. The goal of the calibration is to recover the unknown control parameters that set the load into the desired impedance states. We tested the proposed procedure first on a simulated example and then on the prototype presented in [1] at a frequency of 1575.42 MHz. The results based on both simulated and real data showed accurate recovery of the control parameters. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales Objeto de conferencia Objeto de conferencia http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) application/pdf
institution Universidad Nacional de La Plata
institution_str I-19
repository_str R-120
collection SEDICI (UNLP)
language Inglés
topic Ingeniería
Diffusion map
Manifold learning
Variable loads
spellingShingle Ingeniería
Diffusion map
Manifold learning
Variable loads
Venere, Alejandro Javier
Hurtado, Martín
Muravchik, Carlos Horacio
Calibration of nonlinear variable loads based on manifold learning
topic_facet Ingeniería
Diffusion map
Manifold learning
Variable loads
description In this work, we present a method for calibrating non-linear variable impedances based on the manifold-learning technique. This approach circumvents the dependency on the analytical model of the device, and works under the assumption that the impedance values come from a ”black box” controlled by a number of independent parameters. The goal of the calibration is to recover the unknown control parameters that set the load into the desired impedance states. We tested the proposed procedure first on a simulated example and then on the prototype presented in [1] at a frequency of 1575.42 MHz. The results based on both simulated and real data showed accurate recovery of the control parameters.
format Objeto de conferencia
Objeto de conferencia
author Venere, Alejandro Javier
Hurtado, Martín
Muravchik, Carlos Horacio
author_facet Venere, Alejandro Javier
Hurtado, Martín
Muravchik, Carlos Horacio
author_sort Venere, Alejandro Javier
title Calibration of nonlinear variable loads based on manifold learning
title_short Calibration of nonlinear variable loads based on manifold learning
title_full Calibration of nonlinear variable loads based on manifold learning
title_fullStr Calibration of nonlinear variable loads based on manifold learning
title_full_unstemmed Calibration of nonlinear variable loads based on manifold learning
title_sort calibration of nonlinear variable loads based on manifold learning
publishDate 2017
url http://sedici.unlp.edu.ar/handle/10915/154145
work_keys_str_mv AT venerealejandrojavier calibrationofnonlinearvariableloadsbasedonmanifoldlearning
AT hurtadomartin calibrationofnonlinearvariableloadsbasedonmanifoldlearning
AT muravchikcarloshoracio calibrationofnonlinearvariableloadsbasedonmanifoldlearning
_version_ 1768268593613504512