A Geometrical Approach to Indefinite Least Squares Problems

Given Hilbert spaces ℋ and K , a (bounded) closed range operator C:H→K and a vector y∈K , consider the following indefinite least squares problem: find u∈ℋ such that 〈B(Cu−y),Cu−y〉=min x∈ℋ〈B(Cx−y),Cx−y, where B:K→K is a bounded selfadjoint operator. This work is devoted to give necessary and suffici...

Descripción completa

Detalles Bibliográficos
Autores principales: Giribet, Juan Ignacio, Maestripieri, Alejandra Laura, Martínez Pería, Francisco Dardo
Formato: Articulo
Lenguaje:Inglés
Publicado: 2009
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/141580
Aporte de:
id I19-R120-10915-141580
record_format dspace
institution Universidad Nacional de La Plata
institution_str I-19
repository_str R-120
collection SEDICI (UNLP)
language Inglés
topic Matemática
Ciencias Exactas
Least squares
Oblique projections
Selfadjoint operators
Weighted generalized inverses
spellingShingle Matemática
Ciencias Exactas
Least squares
Oblique projections
Selfadjoint operators
Weighted generalized inverses
Giribet, Juan Ignacio
Maestripieri, Alejandra Laura
Martínez Pería, Francisco Dardo
A Geometrical Approach to Indefinite Least Squares Problems
topic_facet Matemática
Ciencias Exactas
Least squares
Oblique projections
Selfadjoint operators
Weighted generalized inverses
description Given Hilbert spaces ℋ and K , a (bounded) closed range operator C:H→K and a vector y∈K , consider the following indefinite least squares problem: find u∈ℋ such that 〈B(Cu−y),Cu−y〉=min x∈ℋ〈B(Cx−y),Cx−y, where B:K→K is a bounded selfadjoint operator. This work is devoted to give necessary and sufficient conditions for the existence of solutions of this abstract problem. Although the indefinite least squares problem has been thoroughly studied in finite dimensional spaces, the geometrical approach presented in this manuscript is quite different from the analytical techniques used before. As an application we provide some new sufficient conditions for the existence of solutions of an ℋ∞ estimation problem.
format Articulo
Articulo
author Giribet, Juan Ignacio
Maestripieri, Alejandra Laura
Martínez Pería, Francisco Dardo
author_facet Giribet, Juan Ignacio
Maestripieri, Alejandra Laura
Martínez Pería, Francisco Dardo
author_sort Giribet, Juan Ignacio
title A Geometrical Approach to Indefinite Least Squares Problems
title_short A Geometrical Approach to Indefinite Least Squares Problems
title_full A Geometrical Approach to Indefinite Least Squares Problems
title_fullStr A Geometrical Approach to Indefinite Least Squares Problems
title_full_unstemmed A Geometrical Approach to Indefinite Least Squares Problems
title_sort geometrical approach to indefinite least squares problems
publishDate 2009
url http://sedici.unlp.edu.ar/handle/10915/141580
work_keys_str_mv AT giribetjuanignacio ageometricalapproachtoindefiniteleastsquaresproblems
AT maestripierialejandralaura ageometricalapproachtoindefiniteleastsquaresproblems
AT martinezperiafranciscodardo ageometricalapproachtoindefiniteleastsquaresproblems
AT giribetjuanignacio geometricalapproachtoindefiniteleastsquaresproblems
AT maestripierialejandralaura geometricalapproachtoindefiniteleastsquaresproblems
AT martinezperiafranciscodardo geometricalapproachtoindefiniteleastsquaresproblems
bdutipo_str Repositorios
_version_ 1764820459382112258