A Geometrical Approach to Indefinite Least Squares Problems
Given Hilbert spaces ℋ and K , a (bounded) closed range operator C:H→K and a vector y∈K , consider the following indefinite least squares problem: find u∈ℋ such that 〈B(Cu−y),Cu−y〉=min x∈ℋ〈B(Cx−y),Cx−y, where B:K→K is a bounded selfadjoint operator. This work is devoted to give necessary and suffici...
Autores principales: | , , |
---|---|
Formato: | Articulo |
Lenguaje: | Inglés |
Publicado: |
2009
|
Materias: | |
Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/141580 |
Aporte de: |
id |
I19-R120-10915-141580 |
---|---|
record_format |
dspace |
institution |
Universidad Nacional de La Plata |
institution_str |
I-19 |
repository_str |
R-120 |
collection |
SEDICI (UNLP) |
language |
Inglés |
topic |
Matemática Ciencias Exactas Least squares Oblique projections Selfadjoint operators Weighted generalized inverses |
spellingShingle |
Matemática Ciencias Exactas Least squares Oblique projections Selfadjoint operators Weighted generalized inverses Giribet, Juan Ignacio Maestripieri, Alejandra Laura Martínez Pería, Francisco Dardo A Geometrical Approach to Indefinite Least Squares Problems |
topic_facet |
Matemática Ciencias Exactas Least squares Oblique projections Selfadjoint operators Weighted generalized inverses |
description |
Given Hilbert spaces ℋ and K , a (bounded) closed range operator C:H→K and a vector y∈K , consider the following indefinite least squares problem: find u∈ℋ such that 〈B(Cu−y),Cu−y〉=min x∈ℋ〈B(Cx−y),Cx−y, where B:K→K is a bounded selfadjoint operator. This work is devoted to give necessary and sufficient conditions for the existence of solutions of this abstract problem. Although the indefinite least squares problem has been thoroughly studied in finite dimensional spaces, the geometrical approach presented in this manuscript is quite different from the analytical techniques used before. As an application we provide some new sufficient conditions for the existence of solutions of an ℋ∞ estimation problem. |
format |
Articulo Articulo |
author |
Giribet, Juan Ignacio Maestripieri, Alejandra Laura Martínez Pería, Francisco Dardo |
author_facet |
Giribet, Juan Ignacio Maestripieri, Alejandra Laura Martínez Pería, Francisco Dardo |
author_sort |
Giribet, Juan Ignacio |
title |
A Geometrical Approach to Indefinite Least Squares Problems |
title_short |
A Geometrical Approach to Indefinite Least Squares Problems |
title_full |
A Geometrical Approach to Indefinite Least Squares Problems |
title_fullStr |
A Geometrical Approach to Indefinite Least Squares Problems |
title_full_unstemmed |
A Geometrical Approach to Indefinite Least Squares Problems |
title_sort |
geometrical approach to indefinite least squares problems |
publishDate |
2009 |
url |
http://sedici.unlp.edu.ar/handle/10915/141580 |
work_keys_str_mv |
AT giribetjuanignacio ageometricalapproachtoindefiniteleastsquaresproblems AT maestripierialejandralaura ageometricalapproachtoindefiniteleastsquaresproblems AT martinezperiafranciscodardo ageometricalapproachtoindefiniteleastsquaresproblems AT giribetjuanignacio geometricalapproachtoindefiniteleastsquaresproblems AT maestripierialejandralaura geometricalapproachtoindefiniteleastsquaresproblems AT martinezperiafranciscodardo geometricalapproachtoindefiniteleastsquaresproblems |
bdutipo_str |
Repositorios |
_version_ |
1764820459382112258 |