Spatiotemporal control of cell cycle acceleration during axolotl spinal cord regeneration

Axolotls are uniquely able to resolve spinal cord injuries, but little is known about the mechanisms underlying spinal cord regeneration. We previously found that tail amputation leads to reactivation of a developmental-like program in spinal cord ependymal cells (Rodrigo Albors et al., 2015), chara...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Cura Costa, Emanuel, Otsuki, Leo, Rodrigo Albors, Aida, Tanaka, Elly M., Chara, Osvaldo
Formato: Articulo
Lenguaje:Inglés
Publicado: 2021
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/129987
Aporte de:
id I19-R120-10915-129987
record_format dspace
institution Universidad Nacional de La Plata
institution_str I-19
repository_str R-120
collection SEDICI (UNLP)
language Inglés
topic Biología
Spinal cord regeneration
Axolotls
spellingShingle Biología
Spinal cord regeneration
Axolotls
Cura Costa, Emanuel
Otsuki, Leo
Rodrigo Albors, Aida
Tanaka, Elly M.
Chara, Osvaldo
Spatiotemporal control of cell cycle acceleration during axolotl spinal cord regeneration
topic_facet Biología
Spinal cord regeneration
Axolotls
description Axolotls are uniquely able to resolve spinal cord injuries, but little is known about the mechanisms underlying spinal cord regeneration. We previously found that tail amputation leads to reactivation of a developmental-like program in spinal cord ependymal cells (Rodrigo Albors et al., 2015), characterized by a high-proliferation zone emerging 4 days post-amputation (Rost et al., 2016). What underlies this spatiotemporal pattern of cell proliferation, however, remained unknown. Here, we use modeling, tightly linked to experimental data, to demonstrate that this regenerative response is consistent with a signal that recruits ependymal cells during ~85 hours after amputation within ~830 μm of the injury. We adapted Fluorescent Ubiquitination-based Cell Cycle Indicator (FUCCI) technology to axolotls (AxFUCCI) to visualize cell cycles in vivo. AxFUCCI axolotls confirmed the predicted appearance time and size of the injury-induced recruitment zone and revealed cell cycle synchrony between ependymal cells. Our modeling and imaging move us closer to understanding bona fide spinal cord regeneration.
format Articulo
Articulo
author Cura Costa, Emanuel
Otsuki, Leo
Rodrigo Albors, Aida
Tanaka, Elly M.
Chara, Osvaldo
author_facet Cura Costa, Emanuel
Otsuki, Leo
Rodrigo Albors, Aida
Tanaka, Elly M.
Chara, Osvaldo
author_sort Cura Costa, Emanuel
title Spatiotemporal control of cell cycle acceleration during axolotl spinal cord regeneration
title_short Spatiotemporal control of cell cycle acceleration during axolotl spinal cord regeneration
title_full Spatiotemporal control of cell cycle acceleration during axolotl spinal cord regeneration
title_fullStr Spatiotemporal control of cell cycle acceleration during axolotl spinal cord regeneration
title_full_unstemmed Spatiotemporal control of cell cycle acceleration during axolotl spinal cord regeneration
title_sort spatiotemporal control of cell cycle acceleration during axolotl spinal cord regeneration
publishDate 2021
url http://sedici.unlp.edu.ar/handle/10915/129987
work_keys_str_mv AT curacostaemanuel spatiotemporalcontrolofcellcycleaccelerationduringaxolotlspinalcordregeneration
AT otsukileo spatiotemporalcontrolofcellcycleaccelerationduringaxolotlspinalcordregeneration
AT rodrigoalborsaida spatiotemporalcontrolofcellcycleaccelerationduringaxolotlspinalcordregeneration
AT tanakaellym spatiotemporalcontrolofcellcycleaccelerationduringaxolotlspinalcordregeneration
AT charaosvaldo spatiotemporalcontrolofcellcycleaccelerationduringaxolotlspinalcordregeneration
bdutipo_str Repositorios
_version_ 1764820452931272704