Hypergeometric connotations of quantum equations

We show that the Schrödinger and Klein–Gordon equations can both be derived from a hypergeometric differential equation. The same applies to non linear generalizations of these equations.

Detalles Bibliográficos
Autores principales: Plastino, Ángel Luis, Rocca, Mario Carlos
Formato: Articulo
Lenguaje:Inglés
Publicado: 2016
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/129693
Aporte de:
id I19-R120-10915-129693
record_format dspace
institution Universidad Nacional de La Plata
institution_str I-19
repository_str R-120
collection SEDICI (UNLP)
language Inglés
topic Ciencias Exactas
Schrödinger equation
Klein–Gordon equation
Hypergeometric functions
spellingShingle Ciencias Exactas
Schrödinger equation
Klein–Gordon equation
Hypergeometric functions
Plastino, Ángel Luis
Rocca, Mario Carlos
Hypergeometric connotations of quantum equations
topic_facet Ciencias Exactas
Schrödinger equation
Klein–Gordon equation
Hypergeometric functions
description We show that the Schrödinger and Klein–Gordon equations can both be derived from a hypergeometric differential equation. The same applies to non linear generalizations of these equations.
format Articulo
Articulo
author Plastino, Ángel Luis
Rocca, Mario Carlos
author_facet Plastino, Ángel Luis
Rocca, Mario Carlos
author_sort Plastino, Ángel Luis
title Hypergeometric connotations of quantum equations
title_short Hypergeometric connotations of quantum equations
title_full Hypergeometric connotations of quantum equations
title_fullStr Hypergeometric connotations of quantum equations
title_full_unstemmed Hypergeometric connotations of quantum equations
title_sort hypergeometric connotations of quantum equations
publishDate 2016
url http://sedici.unlp.edu.ar/handle/10915/129693
work_keys_str_mv AT plastinoangelluis hypergeometricconnotationsofquantumequations
AT roccamariocarlos hypergeometricconnotationsofquantumequations
bdutipo_str Repositorios
_version_ 1764820452487725059