Numerical simulation of pararotor dynamics: Effect of mass displacement from blade plane

The pararotor is a biology-inspired decelerator device based on the autorotation of a rotary wing, whose main purpose is to guide a load descent into a certain planetary atmosphere. This paper focuses on a practical approach to the general dynamic stability of a pararotor whose center of mass is dis...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Piechocki, Joaquín, Nadal Mora, Vicente Javier, Sanz-Andrés, Ángel
Formato: Articulo
Lenguaje:Inglés
Publicado: 2016
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/128678
Aporte de:
id I19-R120-10915-128678
record_format dspace
institution Universidad Nacional de La Plata
institution_str I-19
repository_str R-120
collection SEDICI (UNLP)
language Inglés
topic Ingeniería
Ingeniería Aeronáutica
Decelerator
Numerical simulation
Rotary wing
spellingShingle Ingeniería
Ingeniería Aeronáutica
Decelerator
Numerical simulation
Rotary wing
Piechocki, Joaquín
Nadal Mora, Vicente Javier
Sanz-Andrés, Ángel
Numerical simulation of pararotor dynamics: Effect of mass displacement from blade plane
topic_facet Ingeniería
Ingeniería Aeronáutica
Decelerator
Numerical simulation
Rotary wing
description The pararotor is a biology-inspired decelerator device based on the autorotation of a rotary wing, whose main purpose is to guide a load descent into a certain planetary atmosphere. This paper focuses on a practical approach to the general dynamic stability of a pararotor whose center of mass is displaced from the blade plane. The numerical simulation tool developed is based upon the motion equations of pararotor flight, utilizing a number of simplifying hypotheses that allow the most influencing factors on flight behavior to be determined. Several simulated cases are analyzed to study the effect of different parameters associated with the pararotor configuration on flight dynamics, particularly the center of mass displacement from the blade plane. It was confirmed that the ability to reach stability conditions depends mainly on a limited number of parameters associated with the pararotor configuration: the relationship between principal moments of inertia, the planform shape (associated with blade aerodynamic coefficients and blade area) and the vertical distance between the center of mass and the blade plane. As a result different types of equilibrium solutions are found and the effect of each parameter is characterized. A bifurcation in the stability shape to a precessing conical rotation, not previously found in the linear stability analysis, is predicted by this numerical model.
format Articulo
Articulo
author Piechocki, Joaquín
Nadal Mora, Vicente Javier
Sanz-Andrés, Ángel
author_facet Piechocki, Joaquín
Nadal Mora, Vicente Javier
Sanz-Andrés, Ángel
author_sort Piechocki, Joaquín
title Numerical simulation of pararotor dynamics: Effect of mass displacement from blade plane
title_short Numerical simulation of pararotor dynamics: Effect of mass displacement from blade plane
title_full Numerical simulation of pararotor dynamics: Effect of mass displacement from blade plane
title_fullStr Numerical simulation of pararotor dynamics: Effect of mass displacement from blade plane
title_full_unstemmed Numerical simulation of pararotor dynamics: Effect of mass displacement from blade plane
title_sort numerical simulation of pararotor dynamics: effect of mass displacement from blade plane
publishDate 2016
url http://sedici.unlp.edu.ar/handle/10915/128678
work_keys_str_mv AT piechockijoaquin numericalsimulationofpararotordynamicseffectofmassdisplacementfrombladeplane
AT nadalmoravicentejavier numericalsimulationofpararotordynamicseffectofmassdisplacementfrombladeplane
AT sanzandresangel numericalsimulationofpararotordynamicseffectofmassdisplacementfrombladeplane
bdutipo_str Repositorios
_version_ 1764820452723654658