Linearly constrained minimum variance spatial filtering for localization of conductivity changes in electrical impedance tomography

We localize dynamic electrical conductivity changes and reconstruct their time evolution introducing the spatial filtering technique to electrical impedance tomography (EIT). More precisely, we use the unit-noisegain constrained variation of the distortionless-response linearly constrained minimum v...

Descripción completa

Detalles Bibliográficos
Autores principales: Fernández Corazza, Mariano, Ellenrieder, Nicolás von, Muravchik, Carlos Horacio
Formato: Articulo
Lenguaje:Inglés
Publicado: 2015
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/127570
Aporte de:
id I19-R120-10915-127570
record_format dspace
institution Universidad Nacional de La Plata
institution_str I-19
repository_str R-120
collection SEDICI (UNLP)
language Inglés
topic Ingeniería Electrónica
Electrical impedance tomography
Spatial filtering
Linearly constrained minimum variance spatial filter
Localization of conductivity changes
spellingShingle Ingeniería Electrónica
Electrical impedance tomography
Spatial filtering
Linearly constrained minimum variance spatial filter
Localization of conductivity changes
Fernández Corazza, Mariano
Ellenrieder, Nicolás von
Muravchik, Carlos Horacio
Linearly constrained minimum variance spatial filtering for localization of conductivity changes in electrical impedance tomography
topic_facet Ingeniería Electrónica
Electrical impedance tomography
Spatial filtering
Linearly constrained minimum variance spatial filter
Localization of conductivity changes
description We localize dynamic electrical conductivity changes and reconstruct their time evolution introducing the spatial filtering technique to electrical impedance tomography (EIT). More precisely, we use the unit-noisegain constrained variation of the distortionless-response linearly constrained minimum variance spatial filter. We address the effects of interference and the use of zero gain constraints. The approach is successfully tested in simulated and real tank phantoms. We compute the position error and resolution to compare the localization performance of the proposed method with the one-step Gauss–Newton reconstruction with Laplacian prior.We also study the effects of sensor position errors. Our results show that EIT spatial filtering is useful for localizing conductivity changes of relatively small size and for estimating their time-courses. Some potential dynamic EIT applications such as acute ischemic stroke detection and neuronal activity localization may benefit from the higher resolution of spatial filters as compared to conventional tomographic reconstruction algorithms.
format Articulo
Articulo
author Fernández Corazza, Mariano
Ellenrieder, Nicolás von
Muravchik, Carlos Horacio
author_facet Fernández Corazza, Mariano
Ellenrieder, Nicolás von
Muravchik, Carlos Horacio
author_sort Fernández Corazza, Mariano
title Linearly constrained minimum variance spatial filtering for localization of conductivity changes in electrical impedance tomography
title_short Linearly constrained minimum variance spatial filtering for localization of conductivity changes in electrical impedance tomography
title_full Linearly constrained minimum variance spatial filtering for localization of conductivity changes in electrical impedance tomography
title_fullStr Linearly constrained minimum variance spatial filtering for localization of conductivity changes in electrical impedance tomography
title_full_unstemmed Linearly constrained minimum variance spatial filtering for localization of conductivity changes in electrical impedance tomography
title_sort linearly constrained minimum variance spatial filtering for localization of conductivity changes in electrical impedance tomography
publishDate 2015
url http://sedici.unlp.edu.ar/handle/10915/127570
work_keys_str_mv AT fernandezcorazzamariano linearlyconstrainedminimumvariancespatialfilteringforlocalizationofconductivitychangesinelectricalimpedancetomography
AT ellenriedernicolasvon linearlyconstrainedminimumvariancespatialfilteringforlocalizationofconductivitychangesinelectricalimpedancetomography
AT muravchikcarloshoracio linearlyconstrainedminimumvariancespatialfilteringforlocalizationofconductivitychangesinelectricalimpedancetomography
bdutipo_str Repositorios
_version_ 1764820451916251137