Evaluation of pairwise entanglement in translationally invariant systems with the random phase approximation
We discuss a general mean field plus random phase approximation (RPA) for describing composite systems at zero and finite temperature. We analyze in particular its implementation in finite systems invariant under translations, where for uniform mean fields it requires just the solution of simple loc...
Autores principales: | , , |
---|---|
Formato: | Articulo |
Lenguaje: | Inglés |
Publicado: |
2008
|
Materias: | |
Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/126047 |
Aporte de: |
id |
I19-R120-10915-126047 |
---|---|
record_format |
dspace |
institution |
Universidad Nacional de La Plata |
institution_str |
I-19 |
repository_str |
R-120 |
collection |
SEDICI (UNLP) |
language |
Inglés |
topic |
Física Coupling Quantum entanglement Physics Random phase approximation Mean field theory Concurrence Spins Invariant (mathematics) Quantum mechanics Anisotropy |
spellingShingle |
Física Coupling Quantum entanglement Physics Random phase approximation Mean field theory Concurrence Spins Invariant (mathematics) Quantum mechanics Anisotropy Matera, Juan Mauricio Rossignoli, Raúl Dante Canosa, Norma Beatriz Evaluation of pairwise entanglement in translationally invariant systems with the random phase approximation |
topic_facet |
Física Coupling Quantum entanglement Physics Random phase approximation Mean field theory Concurrence Spins Invariant (mathematics) Quantum mechanics Anisotropy |
description |
We discuss a general mean field plus random phase approximation (RPA) for describing composite systems at zero and finite temperature. We analyze in particular its implementation in finite systems invariant under translations, where for uniform mean fields it requires just the solution of simple local-type RPA equations. As test and application, we use the method for evaluating the entanglement between two spins in cyclic Evaluation of pairwise entanglement in translationally invariant systems with the random phase approximation chains with both long- and short-range anisotropic XY-type couplings in a uniform transverse magnetic field. The approach is shown to provide an accurate analytic description of the concurrence for strong fields, for any coupling range, pair separation, or chain size, where it predicts an entanglement range which can be at most twice that of the interaction. It also correctly predicts the existence of a separability field together with full entanglement range in its vicinity. The general accuracy of the approach improves as the range of the interaction increases. |
format |
Articulo Articulo |
author |
Matera, Juan Mauricio Rossignoli, Raúl Dante Canosa, Norma Beatriz |
author_facet |
Matera, Juan Mauricio Rossignoli, Raúl Dante Canosa, Norma Beatriz |
author_sort |
Matera, Juan Mauricio |
title |
Evaluation of pairwise entanglement in translationally invariant systems with the random phase approximation |
title_short |
Evaluation of pairwise entanglement in translationally invariant systems with the random phase approximation |
title_full |
Evaluation of pairwise entanglement in translationally invariant systems with the random phase approximation |
title_fullStr |
Evaluation of pairwise entanglement in translationally invariant systems with the random phase approximation |
title_full_unstemmed |
Evaluation of pairwise entanglement in translationally invariant systems with the random phase approximation |
title_sort |
evaluation of pairwise entanglement in translationally invariant systems with the random phase approximation |
publishDate |
2008 |
url |
http://sedici.unlp.edu.ar/handle/10915/126047 |
work_keys_str_mv |
AT materajuanmauricio evaluationofpairwiseentanglementintranslationallyinvariantsystemswiththerandomphaseapproximation AT rossignolirauldante evaluationofpairwiseentanglementintranslationallyinvariantsystemswiththerandomphaseapproximation AT canosanormabeatriz evaluationofpairwiseentanglementintranslationallyinvariantsystemswiththerandomphaseapproximation |
bdutipo_str |
Repositorios |
_version_ |
1764820450046640128 |