Evaluation of pairwise entanglement in translationally invariant systems with the random phase approximation

We discuss a general mean field plus random phase approximation (RPA) for describing composite systems at zero and finite temperature. We analyze in particular its implementation in finite systems invariant under translations, where for uniform mean fields it requires just the solution of simple loc...

Descripción completa

Detalles Bibliográficos
Autores principales: Matera, Juan Mauricio, Rossignoli, Raúl Dante, Canosa, Norma Beatriz
Formato: Articulo
Lenguaje:Inglés
Publicado: 2008
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/126047
Aporte de:
id I19-R120-10915-126047
record_format dspace
institution Universidad Nacional de La Plata
institution_str I-19
repository_str R-120
collection SEDICI (UNLP)
language Inglés
topic Física
Coupling
Quantum entanglement
Physics
Random phase approximation
Mean field theory
Concurrence
Spins
Invariant (mathematics)
Quantum mechanics
Anisotropy
spellingShingle Física
Coupling
Quantum entanglement
Physics
Random phase approximation
Mean field theory
Concurrence
Spins
Invariant (mathematics)
Quantum mechanics
Anisotropy
Matera, Juan Mauricio
Rossignoli, Raúl Dante
Canosa, Norma Beatriz
Evaluation of pairwise entanglement in translationally invariant systems with the random phase approximation
topic_facet Física
Coupling
Quantum entanglement
Physics
Random phase approximation
Mean field theory
Concurrence
Spins
Invariant (mathematics)
Quantum mechanics
Anisotropy
description We discuss a general mean field plus random phase approximation (RPA) for describing composite systems at zero and finite temperature. We analyze in particular its implementation in finite systems invariant under translations, where for uniform mean fields it requires just the solution of simple local-type RPA equations. As test and application, we use the method for evaluating the entanglement between two spins in cyclic Evaluation of pairwise entanglement in translationally invariant systems with the random phase approximation chains with both long- and short-range anisotropic XY-type couplings in a uniform transverse magnetic field. The approach is shown to provide an accurate analytic description of the concurrence for strong fields, for any coupling range, pair separation, or chain size, where it predicts an entanglement range which can be at most twice that of the interaction. It also correctly predicts the existence of a separability field together with full entanglement range in its vicinity. The general accuracy of the approach improves as the range of the interaction increases.
format Articulo
Articulo
author Matera, Juan Mauricio
Rossignoli, Raúl Dante
Canosa, Norma Beatriz
author_facet Matera, Juan Mauricio
Rossignoli, Raúl Dante
Canosa, Norma Beatriz
author_sort Matera, Juan Mauricio
title Evaluation of pairwise entanglement in translationally invariant systems with the random phase approximation
title_short Evaluation of pairwise entanglement in translationally invariant systems with the random phase approximation
title_full Evaluation of pairwise entanglement in translationally invariant systems with the random phase approximation
title_fullStr Evaluation of pairwise entanglement in translationally invariant systems with the random phase approximation
title_full_unstemmed Evaluation of pairwise entanglement in translationally invariant systems with the random phase approximation
title_sort evaluation of pairwise entanglement in translationally invariant systems with the random phase approximation
publishDate 2008
url http://sedici.unlp.edu.ar/handle/10915/126047
work_keys_str_mv AT materajuanmauricio evaluationofpairwiseentanglementintranslationallyinvariantsystemswiththerandomphaseapproximation
AT rossignolirauldante evaluationofpairwiseentanglementintranslationallyinvariantsystemswiththerandomphaseapproximation
AT canosanormabeatriz evaluationofpairwiseentanglementintranslationallyinvariantsystemswiththerandomphaseapproximation
bdutipo_str Repositorios
_version_ 1764820450046640128