Target tracking using interacting multiple models with particle filtering

The problem of modeling accuracy in target tracking has been well studied in the past and is specially important when tracking maneuvering targets. One of the most simple and elegant ways of improving an algorithm in this sense is by using Interacting Multiple Model (IMM). IMM is a method that takes...

Descripción completa

Detalles Bibliográficos
Autores principales: Corral, Alberto Mariano, Cernuschi Frías, Bruno
Formato: Objeto de conferencia
Lenguaje:Inglés
Publicado: 2011
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/125338
Aporte de:
id I19-R120-10915-125338
record_format dspace
institution Universidad Nacional de La Plata
institution_str I-19
repository_str R-120
collection SEDICI (UNLP)
language Inglés
topic Ciencias Informáticas
Target Tracking Using
Models
spellingShingle Ciencias Informáticas
Target Tracking Using
Models
Corral, Alberto Mariano
Cernuschi Frías, Bruno
Target tracking using interacting multiple models with particle filtering
topic_facet Ciencias Informáticas
Target Tracking Using
Models
description The problem of modeling accuracy in target tracking has been well studied in the past and is specially important when tracking maneuvering targets. One of the most simple and elegant ways of improving an algorithm in this sense is by using Interacting Multiple Model (IMM). IMM is a method that takes into account more than one model at the same time. This paper describes how it works and how it has been incorporated in tracking algorithms in the past, specially in the Extended Kalman Filter (EKF). We also introduce a novel way of using it with Particle Filters (PF). The original proposal found here is that we estimate the whole target state sampling particles from the Optimal Function.
format Objeto de conferencia
Objeto de conferencia
author Corral, Alberto Mariano
Cernuschi Frías, Bruno
author_facet Corral, Alberto Mariano
Cernuschi Frías, Bruno
author_sort Corral, Alberto Mariano
title Target tracking using interacting multiple models with particle filtering
title_short Target tracking using interacting multiple models with particle filtering
title_full Target tracking using interacting multiple models with particle filtering
title_fullStr Target tracking using interacting multiple models with particle filtering
title_full_unstemmed Target tracking using interacting multiple models with particle filtering
title_sort target tracking using interacting multiple models with particle filtering
publishDate 2011
url http://sedici.unlp.edu.ar/handle/10915/125338
work_keys_str_mv AT corralalbertomariano targettrackingusinginteractingmultiplemodelswithparticlefiltering
AT cernuschifriasbruno targettrackingusinginteractingmultiplemodelswithparticlefiltering
bdutipo_str Repositorios
_version_ 1764820451531423744