Francis turbine high load instabilities – Model test and CFD simulation

When operating under high load conditions, Francis turbines tend to develop a typical central vortex located under the runner cone. Usually, this central vortex has an axisymmetric main part with helicoidal tail. Under cavitating conditions, this central vapor cavity may become unstable, generating...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Rodríguez, Daniel Amancio, Rivetti, Arturo, Angulo, Mauricio Abel, Lucino, Cecilia Verónica, Liscia, Sergio Oscar
Formato: Articulo
Lenguaje:Inglés
Publicado: 2019
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/125021
Aporte de:
id I19-R120-10915-125021
record_format dspace
institution Universidad Nacional de La Plata
institution_str I-19
repository_str R-120
collection SEDICI (UNLP)
language Inglés
topic Ingeniería
Physics
Vortex
Computational fluid dynamics
Cavitation
Instability
Francis turbine
Scale (ratio)
Rotational symmetry
Mechanics
Flow (psychology)
spellingShingle Ingeniería
Physics
Vortex
Computational fluid dynamics
Cavitation
Instability
Francis turbine
Scale (ratio)
Rotational symmetry
Mechanics
Flow (psychology)
Rodríguez, Daniel Amancio
Rivetti, Arturo
Angulo, Mauricio Abel
Lucino, Cecilia Verónica
Liscia, Sergio Oscar
Francis turbine high load instabilities – Model test and CFD simulation
topic_facet Ingeniería
Physics
Vortex
Computational fluid dynamics
Cavitation
Instability
Francis turbine
Scale (ratio)
Rotational symmetry
Mechanics
Flow (psychology)
description When operating under high load conditions, Francis turbines tend to develop a typical central vortex located under the runner cone. Usually, this central vortex has an axisymmetric main part with helicoidal tail. Under cavitating conditions, this central vapor cavity may become unstable, generating synchronic pressure pulsations (known as self-excited oscillations) which propagate into the entire machine. The volume of the vapor cavity is a relevant feature as it influences the frequency of these pressure pulsations. Numerical flow simulations together with model test measurements and visualizations allow the characterization of the high load vortex pattern developed under different operating and Sigma plant conditions. In this work, model tests and transient two-phase CFD simulations were carried out for a medium-head Francis model scale operating under high load conditions. The vortex instability zone measured and numerical simulated on model scale is presented.
format Articulo
Articulo
author Rodríguez, Daniel Amancio
Rivetti, Arturo
Angulo, Mauricio Abel
Lucino, Cecilia Verónica
Liscia, Sergio Oscar
author_facet Rodríguez, Daniel Amancio
Rivetti, Arturo
Angulo, Mauricio Abel
Lucino, Cecilia Verónica
Liscia, Sergio Oscar
author_sort Rodríguez, Daniel Amancio
title Francis turbine high load instabilities – Model test and CFD simulation
title_short Francis turbine high load instabilities – Model test and CFD simulation
title_full Francis turbine high load instabilities – Model test and CFD simulation
title_fullStr Francis turbine high load instabilities – Model test and CFD simulation
title_full_unstemmed Francis turbine high load instabilities – Model test and CFD simulation
title_sort francis turbine high load instabilities – model test and cfd simulation
publishDate 2019
url http://sedici.unlp.edu.ar/handle/10915/125021
work_keys_str_mv AT rodriguezdanielamancio francisturbinehighloadinstabilitiesmodeltestandcfdsimulation
AT rivettiarturo francisturbinehighloadinstabilitiesmodeltestandcfdsimulation
AT angulomauricioabel francisturbinehighloadinstabilitiesmodeltestandcfdsimulation
AT lucinoceciliaveronica francisturbinehighloadinstabilitiesmodeltestandcfdsimulation
AT lisciasergiooscar francisturbinehighloadinstabilitiesmodeltestandcfdsimulation
bdutipo_str Repositorios
_version_ 1764820451426566146