Using Machine-Learning Models for Field-Scale Crop Yield and Condition Modeling in Argentina
Accurately determining crop growth progress and crop yields at field-scale can help farmers estimate their net profit, enable insurance companies to ascertain payouts, and help in ensuring food security. At field scales, the troika of management, soil and weather combine to impact crop growth progre...
Guardado en:
Autores principales: | Sahajpal, Ritvik, Fontana, Lucas, Lafluf, Pedro, Leale, Guillermo, Puricelli, Estefania, O’Neill, Dan, Hosseini, Mehdi, Varela, Mauricio, Reshef, Inbal |
---|---|
Formato: | Objeto de conferencia |
Lenguaje: | Inglés |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/115530 |
Aporte de: |
Ejemplares similares
-
Forecasting crop yields through climate variables using mixed frequency data: the case of Argentine soybeans
por: Cornejo, Magdalena
Publicado: (2021) -
Forecasting maize yield at field scale based on high-resolution satellite imagery
por: Schwalbert, Rai A., et al.
Publicado: (2020) -
Statistical Forecasting Model for Maize Yield in the Semiarid Region of Córdoba Based on Areal Rainfall Data
por: De la Casa, Antonio
Publicado: (1992) - Linking weather generators and crop models for assessment of climate forecast outcomes
-
Are statistics and machine learning enough to make predictions and forecasts?
por: Lorenzo, Antonio, et al.
Publicado: (2020)