Using Machine-Learning Models for Field-Scale Crop Yield and Condition Modeling in Argentina
Accurately determining crop growth progress and crop yields at field-scale can help farmers estimate their net profit, enable insurance companies to ascertain payouts, and help in ensuring food security. At field scales, the troika of management, soil and weather combine to impact crop growth progre...
Guardado en:
Autores principales: | , , , , , , , , |
---|---|
Formato: | Objeto de conferencia |
Lenguaje: | Inglés |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/115530 |
Aporte de: |
id |
I19-R120-10915-115530 |
---|---|
record_format |
dspace |
institution |
Universidad Nacional de La Plata |
institution_str |
I-19 |
repository_str |
R-120 |
collection |
SEDICI (UNLP) |
language |
Inglés |
topic |
Ciencias Informáticas Crop Yield Forecasting Machine Learning Mixed Effect Models |
spellingShingle |
Ciencias Informáticas Crop Yield Forecasting Machine Learning Mixed Effect Models Sahajpal, Ritvik Fontana, Lucas Lafluf, Pedro Leale, Guillermo Puricelli, Estefania O’Neill, Dan Hosseini, Mehdi Varela, Mauricio Reshef, Inbal Using Machine-Learning Models for Field-Scale Crop Yield and Condition Modeling in Argentina |
topic_facet |
Ciencias Informáticas Crop Yield Forecasting Machine Learning Mixed Effect Models |
description |
Accurately determining crop growth progress and crop yields at field-scale can help farmers estimate their net profit, enable insurance companies to ascertain payouts, and help in ensuring food security. At field scales, the troika of management, soil and weather combine to impact crop growth progress, and this progress can be monitored in-season using satellite data. Here, we use satellite derived metrics, from both optical and radar satellites, and machine learning models to model field-scale crop yields for over 3,000 Soybean and Wheat in Argentina. We compare several machine learning models and our results show the promise of combining mixed effect models with non-parametric models in improving yield modeling capabilities. We also demonstrate the utility of specific satellite derived metrics and extracted features in improving model performance and show that our approach can explain greater than 70% of the variation in yields while remaining generalizable across crops and agro-ecological zones. |
format |
Objeto de conferencia Objeto de conferencia |
author |
Sahajpal, Ritvik Fontana, Lucas Lafluf, Pedro Leale, Guillermo Puricelli, Estefania O’Neill, Dan Hosseini, Mehdi Varela, Mauricio Reshef, Inbal |
author_facet |
Sahajpal, Ritvik Fontana, Lucas Lafluf, Pedro Leale, Guillermo Puricelli, Estefania O’Neill, Dan Hosseini, Mehdi Varela, Mauricio Reshef, Inbal |
author_sort |
Sahajpal, Ritvik |
title |
Using Machine-Learning Models for Field-Scale Crop Yield and Condition Modeling in Argentina |
title_short |
Using Machine-Learning Models for Field-Scale Crop Yield and Condition Modeling in Argentina |
title_full |
Using Machine-Learning Models for Field-Scale Crop Yield and Condition Modeling in Argentina |
title_fullStr |
Using Machine-Learning Models for Field-Scale Crop Yield and Condition Modeling in Argentina |
title_full_unstemmed |
Using Machine-Learning Models for Field-Scale Crop Yield and Condition Modeling in Argentina |
title_sort |
using machine-learning models for field-scale crop yield and condition modeling in argentina |
publishDate |
2020 |
url |
http://sedici.unlp.edu.ar/handle/10915/115530 |
work_keys_str_mv |
AT sahajpalritvik usingmachinelearningmodelsforfieldscalecropyieldandconditionmodelinginargentina AT fontanalucas usingmachinelearningmodelsforfieldscalecropyieldandconditionmodelinginargentina AT laflufpedro usingmachinelearningmodelsforfieldscalecropyieldandconditionmodelinginargentina AT lealeguillermo usingmachinelearningmodelsforfieldscalecropyieldandconditionmodelinginargentina AT puricelliestefania usingmachinelearningmodelsforfieldscalecropyieldandconditionmodelinginargentina AT oneilldan usingmachinelearningmodelsforfieldscalecropyieldandconditionmodelinginargentina AT hosseinimehdi usingmachinelearningmodelsforfieldscalecropyieldandconditionmodelinginargentina AT varelamauricio usingmachinelearningmodelsforfieldscalecropyieldandconditionmodelinginargentina AT reshefinbal usingmachinelearningmodelsforfieldscalecropyieldandconditionmodelinginargentina |
bdutipo_str |
Repositorios |
_version_ |
1764820447029886978 |