Enhancing Hydrogen Evolution Activity of Au(111) in Alkaline Media through Molecular Engineering of a 2D Polymer

The electrochemical splitting of water holds promise for the storage of energy produced intermittently by renewable energy sources. The evolution of hydrogen currently relies on the use of platinum as a catalyst—which is scarce and expensive—and ongoing research is focused towards finding cheaper al...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Alexa, Patrick, Lombardi, Juan Manuel, Abufager, Paula, Busnengo, Heriberto Fabio, Grumelli, Doris Elda, Vyas, Vijay S., Haase, Frederik, Lotsch, Bettina V., Gutzler, Rico, Kern, Klaus
Formato: Articulo Comunicacion
Lenguaje:Inglés
Publicado: 2020
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/107897
http://europepmc.org/backend/ptpmcrender.fcgi?accid=PMC7317855&blobtype=pdf
https://onlinelibrary.wiley.com/doi/full/10.1002/anie.201915855
Aporte de:
id I19-R120-10915-107897
record_format dspace
institution Universidad Nacional de La Plata
institution_str I-19
repository_str R-120
collection SEDICI (UNLP)
language Inglés
topic Ciencias Exactas
Física
Química
density functional theory
hybrid catalyst
hydrogen evolution reaction
polymers
surface chemistry
spellingShingle Ciencias Exactas
Física
Química
density functional theory
hybrid catalyst
hydrogen evolution reaction
polymers
surface chemistry
Alexa, Patrick
Lombardi, Juan Manuel
Abufager, Paula
Busnengo, Heriberto Fabio
Grumelli, Doris Elda
Vyas, Vijay S.
Haase, Frederik
Lotsch, Bettina V.
Gutzler, Rico
Kern, Klaus
Enhancing Hydrogen Evolution Activity of Au(111) in Alkaline Media through Molecular Engineering of a 2D Polymer
topic_facet Ciencias Exactas
Física
Química
density functional theory
hybrid catalyst
hydrogen evolution reaction
polymers
surface chemistry
description The electrochemical splitting of water holds promise for the storage of energy produced intermittently by renewable energy sources. The evolution of hydrogen currently relies on the use of platinum as a catalyst—which is scarce and expensive—and ongoing research is focused towards finding cheaper alternatives. In this context, 2D polymers grown as single layers on surfaces have emerged as porous materials with tunable chemical and electronic structures that can be used for improving the catalytic activity of metal surfaces. Here, we use designed organic molecules to fabricate covalent 2D architectures by an Ullmann-type coupling reaction on Au-(111). The polymer-patterned gold electrode exhibits a hydrogen evolution reaction activity up to three times higher than that of bare gold. Through rational design of the polymer on the molecular level we engineered hydrogen evolution activity by an approach that can be easily extended to other electrocatalytic reactions.
format Articulo
Comunicacion
author Alexa, Patrick
Lombardi, Juan Manuel
Abufager, Paula
Busnengo, Heriberto Fabio
Grumelli, Doris Elda
Vyas, Vijay S.
Haase, Frederik
Lotsch, Bettina V.
Gutzler, Rico
Kern, Klaus
author_facet Alexa, Patrick
Lombardi, Juan Manuel
Abufager, Paula
Busnengo, Heriberto Fabio
Grumelli, Doris Elda
Vyas, Vijay S.
Haase, Frederik
Lotsch, Bettina V.
Gutzler, Rico
Kern, Klaus
author_sort Alexa, Patrick
title Enhancing Hydrogen Evolution Activity of Au(111) in Alkaline Media through Molecular Engineering of a 2D Polymer
title_short Enhancing Hydrogen Evolution Activity of Au(111) in Alkaline Media through Molecular Engineering of a 2D Polymer
title_full Enhancing Hydrogen Evolution Activity of Au(111) in Alkaline Media through Molecular Engineering of a 2D Polymer
title_fullStr Enhancing Hydrogen Evolution Activity of Au(111) in Alkaline Media through Molecular Engineering of a 2D Polymer
title_full_unstemmed Enhancing Hydrogen Evolution Activity of Au(111) in Alkaline Media through Molecular Engineering of a 2D Polymer
title_sort enhancing hydrogen evolution activity of au(111) in alkaline media through molecular engineering of a 2d polymer
publishDate 2020
url http://sedici.unlp.edu.ar/handle/10915/107897
http://europepmc.org/backend/ptpmcrender.fcgi?accid=PMC7317855&blobtype=pdf
https://onlinelibrary.wiley.com/doi/full/10.1002/anie.201915855
work_keys_str_mv AT alexapatrick enhancinghydrogenevolutionactivityofau111inalkalinemediathroughmolecularengineeringofa2dpolymer
AT lombardijuanmanuel enhancinghydrogenevolutionactivityofau111inalkalinemediathroughmolecularengineeringofa2dpolymer
AT abufagerpaula enhancinghydrogenevolutionactivityofau111inalkalinemediathroughmolecularengineeringofa2dpolymer
AT busnengoheribertofabio enhancinghydrogenevolutionactivityofau111inalkalinemediathroughmolecularengineeringofa2dpolymer
AT grumellidoriselda enhancinghydrogenevolutionactivityofau111inalkalinemediathroughmolecularengineeringofa2dpolymer
AT vyasvijays enhancinghydrogenevolutionactivityofau111inalkalinemediathroughmolecularengineeringofa2dpolymer
AT haasefrederik enhancinghydrogenevolutionactivityofau111inalkalinemediathroughmolecularengineeringofa2dpolymer
AT lotschbettinav enhancinghydrogenevolutionactivityofau111inalkalinemediathroughmolecularengineeringofa2dpolymer
AT gutzlerrico enhancinghydrogenevolutionactivityofau111inalkalinemediathroughmolecularengineeringofa2dpolymer
AT kernklaus enhancinghydrogenevolutionactivityofau111inalkalinemediathroughmolecularengineeringofa2dpolymer
bdutipo_str Repositorios
_version_ 1764820443753086981