Glycerol electrooxidation on platinum-tin electrodeposited films: inducing changes in surface composition by cyclic voltammetry

In this work, PtSn binary electrodeposits were prepared in three compositions and submitted to successive voltammetric cycles in presence of glycerol (1.0 mol L−1) in acidic media. Catalysts were characterized by energy dispersive X-ray analysis and X-ray photoelectron spectroscopy before and after...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Mello, Gisele A. B., Fernández, Pablo S., Martins, María Elisa, Camara, Giuseppe A.
Formato: Articulo
Lenguaje:Inglés
Publicado: 2017
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/104788
Aporte de:
id I19-R120-10915-104788
record_format dspace
institution Universidad Nacional de La Plata
institution_str I-19
repository_str R-120
collection SEDICI (UNLP)
language Inglés
topic Química
Glycerol electrooxidation
Platinum-tin
Electrodeposits
Tunable composition
Surface composition change
spellingShingle Química
Glycerol electrooxidation
Platinum-tin
Electrodeposits
Tunable composition
Surface composition change
Mello, Gisele A. B.
Fernández, Pablo S.
Martins, María Elisa
Camara, Giuseppe A.
Glycerol electrooxidation on platinum-tin electrodeposited films: inducing changes in surface composition by cyclic voltammetry
topic_facet Química
Glycerol electrooxidation
Platinum-tin
Electrodeposits
Tunable composition
Surface composition change
description In this work, PtSn binary electrodeposits were prepared in three compositions and submitted to successive voltammetric cycles in presence of glycerol (1.0 mol L−1) in acidic media. Catalysts were characterized by energy dispersive X-ray analysis and X-ray photoelectron spectroscopy before and after the cycles being performed, in order to check eventual changes in their compositions during the process. Spectroscopic results show that surface compositions are sensibly richer in Sn than their bulk counterparts. Overall, PtSn catalysts show a poor initial catalytic activity toward glycerol electrooxidation. However, as the cycles succeed, the voltammetric responses increasingly resemble that of Pt, while the oxidation currents increase. Results are rationalized in terms of a continuous enrichment of the surface by Pt at the expenses of a loss of Sn. Moreover, when the electrochemical surface area (ECSA) is estimated by stripping of CO, it becomes evident that electrooxidation currents remain growing, even when the ECSA is decreased, which makes the gain in catalytic activity particularly relevant. Ultimately, from a broader perspective, our results suggest that catalytic surfaces with tunable features (such as surface composition and catalytic response) can be obtained by the application of easily executable electrochemical protocols.
format Articulo
Articulo
author Mello, Gisele A. B.
Fernández, Pablo S.
Martins, María Elisa
Camara, Giuseppe A.
author_facet Mello, Gisele A. B.
Fernández, Pablo S.
Martins, María Elisa
Camara, Giuseppe A.
author_sort Mello, Gisele A. B.
title Glycerol electrooxidation on platinum-tin electrodeposited films: inducing changes in surface composition by cyclic voltammetry
title_short Glycerol electrooxidation on platinum-tin electrodeposited films: inducing changes in surface composition by cyclic voltammetry
title_full Glycerol electrooxidation on platinum-tin electrodeposited films: inducing changes in surface composition by cyclic voltammetry
title_fullStr Glycerol electrooxidation on platinum-tin electrodeposited films: inducing changes in surface composition by cyclic voltammetry
title_full_unstemmed Glycerol electrooxidation on platinum-tin electrodeposited films: inducing changes in surface composition by cyclic voltammetry
title_sort glycerol electrooxidation on platinum-tin electrodeposited films: inducing changes in surface composition by cyclic voltammetry
publishDate 2017
url http://sedici.unlp.edu.ar/handle/10915/104788
work_keys_str_mv AT mellogiseleab glycerolelectrooxidationonplatinumtinelectrodepositedfilmsinducingchangesinsurfacecompositionbycyclicvoltammetry
AT fernandezpablos glycerolelectrooxidationonplatinumtinelectrodepositedfilmsinducingchangesinsurfacecompositionbycyclicvoltammetry
AT martinsmariaelisa glycerolelectrooxidationonplatinumtinelectrodepositedfilmsinducingchangesinsurfacecompositionbycyclicvoltammetry
AT camaragiuseppea glycerolelectrooxidationonplatinumtinelectrodepositedfilmsinducingchangesinsurfacecompositionbycyclicvoltammetry
bdutipo_str Repositorios
_version_ 1764820442396229632