Legendre transform structure and extremal properties of the relative Fisher information
Variational extremization of the relative Fisher information (RFI, hereafter) is performed. Reciprocity relations, akin to those of thermodynamics are derived, employing the extremal results of mthe RFI expressed in terms of probability amplitudes. A time independent Schrodinger-like equation (Schro...
Guardado en:
| Autores principales: | , |
|---|---|
| Formato: | Articulo Preprint |
| Lenguaje: | Inglés |
| Publicado: |
2014
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/101912 https://ri.conicet.gov.ar/11336/23731 https://arxiv.org/abs/1312.4359 |
| Aporte de: |
| id |
I19-R120-10915-101912 |
|---|---|
| record_format |
dspace |
| institution |
Universidad Nacional de La Plata |
| institution_str |
I-19 |
| repository_str |
R-120 |
| collection |
SEDICI (UNLP) |
| language |
Inglés |
| topic |
Física Relative fisher information Generalized RFI- Euler theorem Legendre transform structure Schrödinger-like link Inference Energy eigenvalues |
| spellingShingle |
Física Relative fisher information Generalized RFI- Euler theorem Legendre transform structure Schrödinger-like link Inference Energy eigenvalues Venkatesan, R. C. Plastino, Ángel Luis Legendre transform structure and extremal properties of the relative Fisher information |
| topic_facet |
Física Relative fisher information Generalized RFI- Euler theorem Legendre transform structure Schrödinger-like link Inference Energy eigenvalues |
| description |
Variational extremization of the relative Fisher information (RFI, hereafter) is performed. Reciprocity relations, akin to those of thermodynamics are derived, employing the extremal results of mthe RFI expressed in terms of probability amplitudes. A time independent Schrodinger-like equation (Schrodinger like link) for the RFI is derived. The concomitant Legendre transform structure (LTS hereafter) is developed by utilizing a generalized RFI-Euler theorem, which shows that the entire mathematical structure of htermodynamics translates into the RFI framework, both for equilibrium and non equilibrium cases. The qualitatevily distinct nature of the present results visd-a-vis those of prio studies utilizing the Shannon Entropy and/or the Fisher information mmeasure is discussed. A principled relationship between the RFI and the FIM ferameworks is derived. The utility of this relationship is demosnstrated by an example wherein the energy eigenvalues of the Schroedinger-like link for the RFI are inferred solely using the quantum mechanical virial theorem and the LTS of the RFI. |
| format |
Articulo Preprint |
| author |
Venkatesan, R. C. Plastino, Ángel Luis |
| author_facet |
Venkatesan, R. C. Plastino, Ángel Luis |
| author_sort |
Venkatesan, R. C. |
| title |
Legendre transform structure and extremal properties of the relative Fisher information |
| title_short |
Legendre transform structure and extremal properties of the relative Fisher information |
| title_full |
Legendre transform structure and extremal properties of the relative Fisher information |
| title_fullStr |
Legendre transform structure and extremal properties of the relative Fisher information |
| title_full_unstemmed |
Legendre transform structure and extremal properties of the relative Fisher information |
| title_sort |
legendre transform structure and extremal properties of the relative fisher information |
| publishDate |
2014 |
| url |
http://sedici.unlp.edu.ar/handle/10915/101912 https://ri.conicet.gov.ar/11336/23731 https://arxiv.org/abs/1312.4359 |
| work_keys_str_mv |
AT venkatesanrc legendretransformstructureandextremalpropertiesoftherelativefisherinformation AT plastinoangelluis legendretransformstructureandextremalpropertiesoftherelativefisherinformation |
| bdutipo_str |
Repositorios |
| _version_ |
1764820440489918466 |