Interplay between sequence, structure and linear motifs in the adenovirus E1A hub protein

E1A is the main transforming protein in mastadenoviruses. This work uses bioinformatics to extrapolate experimental knowledge from Human adenovirus serotype 5 and 12 E1A proteins to all known serotypes. A conserved domain architecture with a high degree of intrinsic disorder acts as a scaffold for m...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Glavina, J.
Otros Autores: Román, E.A, Espada, R., de Prat-Gay, G., Chemes, L.B, Sánchez, I.E
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Academic Press Inc. 2018
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
Descripción
Sumario:E1A is the main transforming protein in mastadenoviruses. This work uses bioinformatics to extrapolate experimental knowledge from Human adenovirus serotype 5 and 12 E1A proteins to all known serotypes. A conserved domain architecture with a high degree of intrinsic disorder acts as a scaffold for multiple linear motifs with variable occurrence mediating the interaction with over fifty host proteins. While linear motifs contribute strongly to sequence conservation within intrinsically disordered E1A regions, motif repertoires can deviate significantly from those found in prototypical serotypes. Close to one hundred predicted residue-residue contacts suggest the presence of stable structure in the CR3 domain and of specific conformational ensembles involving both short- and long-range intramolecular interactions. Our computational results suggest that E1A sequence conservation and co-evolution reflect the evolutionary pressure to maintain a mainly disordered, yet non-random conformation harboring a high number of binding motifs that mediate viral hijacking of the cell machinery. © 2018 Elsevier Inc.
Bibliografía:Allende, J.E., Allende, C.C., Protein kinases. 4. Protein kinase CK2: an enzyme with multiple substrates and a puzzling regulation (1995) FASEB J., 9 (5), pp. 313-323
Ansieau, S., Leutz, A., The conserved Mynd domain of BS69 binds cellular and oncoviral proteins through a common PXLXP motif (2002) J. Biol. Chem., 277 (7), pp. 4906-4910
Ashkenazy, H., Abadi, S., Martz, E., Chay, O., Mayrose, I., Pupko, T., ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules (2016) Nucleic Acids Res, 44 (W1), pp. W344-W350
Avvakumov, N., Wheeler, R., D'Halluin, J.C., Mymryk, J.S., Comparative sequence analysis of the largest E1A proteins of human and simian adenoviruses (2002) J. Virol., 76 (16), pp. 7968-7975
Avvakumov, N., Kajon, A.E., Hoeben, R.C., Mymryk, J.S., Comprehensive sequence analysis of the E1A proteins of human and simian adenoviruses (2004) Virology, 329 (2), pp. 477-492
Benjamini, Y., Hochberg, Y., Controlling the false discovery rate: a practical and powerful approach to multiple testing (1995) J. R. Stat. Soc. Ser. B Methodol., 57 (1), pp. 289-300
Bondesson, M., Svensson, C., Linder, S., Akusjärvi, G., The carboxy-terminal exon of the adenovirus E1A protein is required for E4F-dependent transcription activation (1992) EMBO J., 11 (9), pp. 3347-3354
Borcherds, W., Becker, A., Chen, L., Chen, J., Chemes, L.B., Daughdrill, G.W., Optimal affinity enhancement by a conserved flexible linker controls p53 mimicry in MdmX (2017) Biophys. J., 112 (10), pp. 2038-2042
Borkosky, S.S., Camporeale, G., Chemes, L.B., Risso, M., Noval, M.G., Sánchez, I.E., Hidden structural codes in protein intrinsic disorder (2017) Biochemistry, 56 (41), pp. 5560-5569
Boyd, J.M., Subramanian, T., Schaeper, U., La Regina, M., Bayley, S.T., Chinnadurai, G., A region in the C-terminus of adenovirus 2/5 E1a protein is required for association with a cellular phosphoprotein and important for the negative modulation of T24-ras mediated transformation, tumorigenesis and metastasis (1993) EMBO J., 12 (2), pp. 469-478
Boyd, J.M., Loewenstein, P.M., Tang, Q.Q., Yu, L., Green, M., Adenovirus E1A N-terminal amino acid sequence requirements for repression of transcription in vitro and in vivo correlate with those required for E1A interference with TBP-TATA complex formation (2002) J. Virol., 76 (3), pp. 1461-1474
Buslje, C.M., Santos, J., Delfino, J.M., Nielsen, M., Correction for phylogeny, small number of observations and data redundancy improves the identification of coevolving amino acid pairs using mutual information (2009) Bioinformatics, 25 (9), pp. 1125-1131
Camporeale, G., Lorenzo, J.R., Thomas, M.G., Salvatierra, E., Borkosky, S.S., Risso, M.G., Degenerate cysteine patterns mediate two redox sensing mechanisms in the papillomavirus E7 oncoprotein (2017) Redox Biol., 11, pp. 38-50. , (October 2016)
Chatton, B., Bocco, J.L., Gaire, M., Hauss, C., Reimund, B., Goetz, J., Transcriptional activation by the adenovirus larger E1a product is mediated by members of the cellular transcription factor ATF family which can directly associate with E1a (1993) Mol. Cell Biol., 13 (1), pp. 561-570
Chemes, L.B., Sánchez, I.E., Smal, C., de Prat-Gay, G., Targeting mechanism of the retinoblastoma tumor suppressor by a prototypical viral oncoprotein. Structural modularity, intrinsic disorder and phosphorylation of human papillomavirus E7 (2010) FEBS J., 277 (4), pp. 973-988
Chemes, L.B., Sánchez, I.E., de Prat-Gay, G., Kinetic recognition of the retinoblastoma tumor suppressor by a specific protein target (2011) J. Mol. Biol., 412 (2), pp. 267-284
Chemes, L.B., Glavina, J., Alonso, L.G., Marino-Buslje, C., de Prat-Gay, G., Sánchez, I.E., Sequence evolution of the intrinsically disordered and globular domains of a model viral oncoprotein (2012) PLoS One, 7 (10), p. e47661
Chemes, L.B., Glavina, J., Faivovich, J., de Prat-Gay, G., Sánchez, I.E., Evolution of linear motifs within the papillomavirus E7 oncoprotein (2012) J. Mol. Biol., 422 (3), pp. 336-346
Chemes, L.B., Camporeale, G., Sánchez, I.E., de Prat-Gay, G., Alonso, L.G., Cysteine-rich positions outside the structural zinc motif of human papillomavirus E7 provide conformational modulation and suggest functional redox roles (2014) Biochemistry, 53 (10), pp. 1680-1696
Chemes, L.B., de Prat-Gay, G., Sánchez, I.E., Convergent evolution and mimicry of protein linear motifs in host-pathogen interactions (2015) Curr. Opin. Struct. Biol., 32, pp. 91-101
Clementi, C., Nymeyer, H., Onuchic, J.N., Topological and energetic factors: what determines the structural details of the transition state ensemble and en-route intermediates for protein folding? An investigation for small globular proteins (2000) J. Mol. Biol., 298 (5), pp. 937-953. , (arXiv:0003460)
Cohen, M.J., Yousef, A.F., Massimi, P., Fonseca, G.J., Todorovic, B., Pelka, P., Dissection of the C-terminal region of E1A redefines the roles of CtBP and other cellular targets in oncogenic transformation (2013) J. Virol., 87 (18), pp. 10348-10355
Cohen, M.J., King, C.R., Dikeakos, J.D., Mymryk, J.S., Functional analysis of the C-terminal region of human adenovirus E1A reveals a misidentified nuclear localization signal (2014) Virology, 468–470C, pp. 238-243
Corbeil, H.B., Branton, P.E., Functional importance of complex formation between the retinoblastoma tumor suppressor family and adenovirus E1A proteins as determined by mutational analysis of E1A conserved region 2 (1994) J. Virol., 68 (10), pp. 6697-6709
Crooks, G.E., Hon, G., Chandonia, J.M., Brenner, S.E., WebLogo: a sequence logo generator (2004) Genome Res, 14 (6), pp. 1188-1190
Culp, J.S., Webster, L.C., Friedman, D.J., Smith, C.L., Huang, W.J., Wu, F.Y., The 289-amino acid E1A protein of adenovirus binds zinc in a region that is important for trans-activation (1988) Proc. Natl. Acad. Sci. USA, 85 (17), pp. 6450-6454
Daughdrill, G.W., Borcherds, W.M., Wu, H., Disorder predictors also predict backbone dynamics for a family of disordered proteins (2011) PLoS One, 6 (12), pp. 0-6
Davey, N.E., Travé, G., Gibson, T.J., How viruses hijack cell regulation (2011) Trends Biochem. Sci., 36 (3), pp. 159-169
Davey, N.E., Van Roey, K., Weatheritt, R.J., Toedt, G., Uyar, B., Altenberg, B., Attributes of short linear motifs (2012) Mol. Biosyst., 8 (1), pp. 268-281
Davison, A.J., Benko, M., Harrach, B., Genetic content and evolution of adenoviruses (2003) J. Gen. Virol., 84 (11), pp. 2895-2908
Dinkel, H., Van Roey, K., Michael, S., Davey, N.E., Weatheritt, R.J., Born, D., The eukaryotic linear motif resource ELM: 10 years and counting (2014) Nucleic Acids Res., 42 (Database issue), pp. D259-66
Doerfler, W., Böhm, P., (2004), 273, pp. 05715-1. , http://dx.doi.org/10.1007/978-3-662-05599-1, Adenoviruses: Model and Vectors in Virus-Host Interactions; of Current Topics in Microbiology and Immunology. 1 ed.; Berlin, Heidelberg: Springer Berlin Heidelberg. ISBN 978-3-642-; Dosztányi, Z., Csizmók, V., Tompa, P., Simon, I., IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content (2005) Bioinformatics, 21 (16), pp. 3433-3434
Dyson, H.J., Wright, P.E., Role of intrinsic protein disorder in the function and interactions of the transcriptional coactivators CREB-binding Protein (CBP) and p300 (2016) J. Biol. Chem., 291 (13), pp. 6714-6722. , (arXiv:NIHMS150003)
Dyson, N.J., Guida, P., McCall, C., Harlow, E., Adenovirus E1A makes two distinct contacts with the retinoblastoma protein (1992) J. Virol., 66 (7), pp. 4606-4611
Edgar, R.C., MUSCLE: multiple sequence alignment with high accuracy and high throughput (2004) Nucleic Acids Res., 32 (5), pp. 1792-1797
Espada, R., Parra, R.G., Mora, T., Walczak, A.M., Ferreiro, D.U., Capturing coevolutionary signals inrepeat proteins (2015) BMC Bioinforma., 16 (1), p. 207. , 1407.6903, (arXiv:)
Ferrari, R., Pellegrini, M., Horwitz, G.A., Xie, W., Berk, A.J., Kurdistani, S.K., Epigenetic reprogramming by adenovirus e1a (2008) Science, 321 (5892), pp. 1086-1088
Ferreiro, D.U., Hegler, J.A., Komives, E.A., Wolynes, P.G., Localizing frustration in native proteins and protein assemblies (2007) Proc. Natl. Acad. Sci. USA, 104 (50), pp. 19819-19824
Ferreon, J.C., Martinez-Yamout, M.A., Dyson, H.J., Wright, P.E., Structural basis for subversion of cellular control mechanisms by the adenoviral E1A oncoprotein (2009) Proc. Natl. Acad. Sci. USA, 106 (32), pp. 13260-13265
Ferreon, A.C.M., Ferreon, J.C., Wright, P.E., Deniz, A.A., Modulation of allostery by protein intrinsic disorder (2013) Nature, 498 (7454), pp. 390-394
Geisberg, J.V., Chen, J.L., Ricciardi, R.P., Subregions of the adenovirus E1A transactivation domain target multiple components of the TFIID complex (1995) Mol. Cell. Biol., 15 (11), pp. 6283-6290
Good, P.I., Permutation, Parametric, and Bootstrap Tests of Hypotheses. Springer Series in Statistics (2006), 3 ed. Springer-Verlag New York (); Graham, F.L., Smiley, J., Russell, W.C., Nairn, R., Characteristics of a human cell line transformed by DNA from human adenovirus type 5 (1977) J. Gen. Virol., 36 (1), pp. 59-74
Haberz, P., Arai, M., Martinez-Yamout, M.A., Dyson, H.J., Wright, P.E., Mapping the interactions of adenoviral E1A proteins with the p160 nuclear receptor coactivator binding domain of CBP (2016) Protein Sci., 25 (12), pp. 2256-2267
Harrach, B., Benkö, M., Both, G.W., Brown, M., Davison, A.J., Echavarría, M., (2011), pp. 125-141. , http://dx.doi.org/10.1016/B978-0-12-384684-6.00009-4, In: King, A.M., Adams, M.J., Carstens, E.B., Lefkowitz, E.J., editors. Virus Taxononmy. Ninth Report. International Committe Taxon. Viruses; chap. Family Adenoviridae; 9 ed. San Diego: Elsevier; Hateboer, G., Gennissen, A., Ramos, Y.F.M., Kerkhoven, R.M., Sonntag-Buck, V., Stunnenberg, H.G., BS69, a novel adenovirus E1A-associated protein that inhibits E1A transactivation (1995) EMBO J., 14 (13), pp. 3159-3169
Heck, D.V., Yee, C.L., Howley, P.M., Münger, K., Efficiency of binding the retinoblastoma protein correlates with the transforming capacity of the E7 oncoproteins of the human papillomaviruses (1992) Proc. Natl. Acad. Sci. USA, 89 (10), pp. 4442-4446
Henikoff, S., Henikoff, J.G., Position-based sequence weights (1994) J. Mol. Biol., 243 (4), pp. 574-578
Hošek, T., Calçada, E.O., Nogueira, M.O., Salvi, M., Pagani, T.D., Felli, I.C., Structural and dynamic characterization of the molecular hub early Region 1A (E1A) from human adenovirus (2016) Chem. - A Eur. J., 22 (37), pp. 13010-13013
Humphrey, W., Dalke, A., Schulten, K., VMD: visual molecular dynamics (1996) J. Mol. Graph, 14 (1). , (33-8, 27-8)
Ikeda, M.A., Nevins, J.R., Identification of distinct roles for separate E1A domains in disruption of E2F complexes (1993) Mol. Cell. Biol., 13 (11), pp. 7029-7035
Isobe, T., Uchida, C., Hattori, T., Kitagawa, K., Oda, T., Kitagawa, M., Ubiquitin-dependent degradation of adenovirus E1A protein is inhibited by BS69 (2006) Biochem. Biophys. Res. Commun., 339 (1), pp. 367-374
Köhler, M., Görlich, D., Hartmann, E., Franke, J., Adenoviral E1A protein nuclear import is preferentially mediated by importin alpha3 (2001) Vitr. Virol., 289 (2), pp. 186-191
Khanal, S., Ghimire, P., Dhamoon, A., The repertoire of adenovirus in human disease: the innocuous to the deadly (2018) Biomedicines, 6 (1), p. 30
Kimelman, D., Miller, J.S., Porter, D., Roberts, B.E., E1a regions of the human adenoviruses and of the highly oncogenic simian adenovirus 7 are closely related (1985) J. Virol., 53 (2), pp. 399-409
King, C.R., Zhang, A., Tessier, T.M., Gameiro, S.F., Mymryk, J.S., Hacking the cell: network intrusion and exploitation by adenovirus E1A (2018) MBio, 9 (3), pp. 1-18
Larsen, P.L., Tibbetts, C., Adenovirus E1A gene autorepression: revertants of an E1A promoter mutation encode altered E1A proteins (1987) Proc. Natl. Acad. Sci. USA, 84 (December), pp. 8185-8189
Liu, F., Green, M.R., Promoter targeting by adenovirus E1a through interaction with different cellular DNA-binding domains (1994) Nature, 368 (6471), pp. 520-525
Liu, X., Marmorstein, R., Structure of the retinoblastoma protein bound to adenovirus E1A reveals the molecular basis for viral oncoprotein inactivation of a tumor suppressor (2007) Genes Dev., 21 (21), pp. 2711-2716
Liu, X., Clements, A., Zhao, K., Marmorstein, R., Structure of the human Papillomavirus E7 oncoprotein and its mechanism for inactivation of the retinoblastoma tumor suppressor (2006) J. Biol. Chem., 281 (1), pp. 578-586
Lyons, R.H., Ferguson, B.Q., Rosenberg, M., Pentapeptide nuclear localization signal in adenovirus E1a (1987) Mol. Cell. Biol., 7 (7), pp. 2451-2456
Madison, D.L., Yaciuk, P., Kwok, R.P.S., Lundblad, J.R., Acetylation of the adenovirus-transforming protein E1A determines nuclear localization by disrupting association with importin-alpha (2002) J. Biol. Chem., 277 (41), pp. 38755-38763
Martin, A.J.M., Walsh, I., Tosatto, S.C.E., MOBI: a web server to define and visualize structural mobility in NMR protein ensembles (2010) Bioinformatics, 26 (22), pp. 2916-2917
Mazzarelli, J.M., Mengus, G., Davidson, I., Ricciardi, R.P., The transactivation domain of adenovirus E1A interacts with the C terminus of human TAF(II)135 (1997) J. Virol., 71 (10), pp. 7978-7983
Meng, X., Webb, P., Yang, Y.F., Shuen, M., Yousef, A.F., Baxter, J.D., E1A and a nuclear receptor corepressor splice variant (N-CoRI) are thyroid hormone receptor coactivators that bind in the corepressor mode (2005) Proc. Natl. Acad. Sci. USA, 102 (18), pp. 6267-6272
Molloy, D.P., Milner, A.E., Yakub, I.K., Chinnadurai, G., Gallimore, P.H., Grand, R.J.A., Structural determinants present in the C-terminal binding protein binding site of adenovirus early Region 1A proteins (1998) J. Biol. Chem., 273 (33), pp. 20867-20876
Molloy, D.P., Smith, K.J., Milner, A.E., Gallimore, P.H., Grand, R.J.A., The structure of the site on adenovirus early Region 1A responsible for binding to TATA-binding protein determined by NMR spectroscopy (1999) J. Biol. Chem., 274 (6), pp. 3503-3512
Molloy, D.P., Barral, P.M., Bremner, K.H., Gallimore, P.H., Grand, R.J.A., Structural determinants in adenovirus 12 E1A involved in the interaction with C-terminal binding protein 1 (2000) Virology, 277 (1), pp. 156-166
Molloy, D.P., Mapp, K.L., Webster, R., Gallimore, P.H., Grand, R.J.A., Acetylation at a lysine residue adjacent to the CtBP binding motif within adenovirus 12 E1A causes structural disruption and limited reduction of CtBP binding (2006) Virology, 355 (2), pp. 115-126
Molloy, D.P., Barral, P.M., Gallimore, P.H., Grand, R.J.A., The effect of CtBP1 binding on the structure of the C-terminal region of adenovirus 12 early region 1A (2007) Virology, 363 (2), pp. 342-356
Morcos, F., Pagnani, A., Lunt, B., Bertolino, A., Marks, D.S., Sander, C., Direct-coupling analysis of residue coevolution captures native contacts across many protein families (2011) Proc. Natl. Acad. Sci. USA, 108 (49), pp. E1293-301
Ozenne, V., Bauer, F., Salmon, L., Huang, J.R., Jensen, M.R., Segard, S., Flexible-meccano: a tool for the generation of explicit ensemble descriptions of intrinsically disordered proteins and their associated experimental observables (2012) Bioinformatics, 28 (11), pp. 1463-1470
Palopoli, N., González Foutel, N.S., Gibson, T.J., Chemes, L.B., Short linear motif core and flanking regions modulate retinoblastoma protein binding affinity and specificity (2018) Protein Eng. Des. Sel., 31 (3), pp. 69-77
Pelka, P., Ablack, J.N.G., Fonseca, G.J., Yousef, A.F., Mymryk, J.S., Intrinsic structural disorder in adenovirus E1A: a viral molecular hub linking multiple diverse processes (2008) J. Virol., 82 (15), pp. 7252-7263
Perricaudet, M., Akusjärvi, G., Virtanen, A., Pettersson, U., (1979), http://dx.doi.org/10.1038/281694a0, Structure of two spliced mRNAs from the transforming region of human subgroup C adenoviruses; Phelan, C.A., Gampe, R.T., Lambert, M.H., Parks, D.J., Montana, V., Bynum, J., Structure of Rev-erb alpha bound to N-CoR reveals a unique mechanism of nuclear receptor-co-repressor interaction (2010) Nat. Struct. Mol. Biol., 17 (7), pp. 808-814
Pronk, S., Páll, S., Schulz, R., Larsson, P., Bjelkmar, P., Apostolov, R., GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit (2013) Bioinformatics, 29 (7), pp. 845-854
Radko, S., Koleva, M., James, K.M.D., Jung, R., Mymryk, J.S., Pelka, P., Adenovirus E1A targets the DREF nuclear factor to regulate virus gene expression, DNA replication, and growth (2014) J. Virol., 88 (22), pp. 13469-13481
Radko, S., Jung, R., Olanubi, O., Pelka, P., Effects of adenovirus type 5 E1A isoforms on viral replication in arrested human cells (2015) PLoS One, 10 (10), pp. 1-18
Rasti, M., Grand, R.J.A., Mymryk, J.S., Gallimore, P.H., Turnell, A.S., Recruitment of CBP/p300, TATA-binding protein, and S8 to distinct regions at the N terminus of adenovirus E1A (2005) J. Virol., 79 (9), pp. 5594-5605
Reddy, V.S., Natchiar, S.K., Stewart, P.L., Nemerow, G.R., Crystal structure of human adenovirus at 3.5 Å resolution (2010) Science (80-), 329 (5995), pp. 1071-1075
Rotkiewicz, P., Skolnick, J., Fast procedure for reconstruction of full-atom protein models from reduced representations (2008) J. Comput. Chem., 29 (9), pp. 1460-1465
Schaeper, U., Boyd, J.M., Verma, S., Uhlmann, E., Subramanian, T., Chinnadurai, G., Molecular cloning and characterization of a cellular phosphoprotein that interacts with a conserved C-terminal domain of adenovirus E1A involved in negative modulation of oncogenic transformation (1995) Proc. Natl. Acad. Sci. USA, 92 (23), pp. 10467-10471
Schneider, T.D., Stephens, R.M., Sequence logos: a new way to display consensus sequences (1990) Nucleic Acids Res., 18 (20), pp. 6097-6100
Schneider, T.D., Stormo, G.D., Gold, L., Ehrenfeucht, A., Information content of binding sites on nucleotide sequences (1986) J. Mol. Biol., 188 (3), pp. 415-431
Shapiro, S.S., Wilk, M.B., An analysis of variance test for normality (Complete Samples) (1965) Biometrika, 52 (3), pp. 591-611
Singh, M., Krajewski, M., Mikolajka, A., Holak, T.A., Molecular determinants for the complex formation between the retinoblastoma protein and LXCXE sequences (2005) J. Biol. Chem., 280 (45), pp. 37868-37876
Sippl, M.J., Wiederstein, M., Detection of spatial correlations in protein structures and molecular complexes (2012) Structure, 20 (4), pp. 718-728
Strath, J., Blair, G.E., Adenovirus subversion of immune surveillance, apoptotic and growth regulatory pathways: a Model for tumorigenesis (2006) Acta Microbiol. Immunol. Hung., 53 (2), pp. 145-169
Subramanian, T., Kuppuswamy, M., Nasr, R.J., Chinnadurai, G., An N-terminal region of adenovirus E1a essential for cell transformation and induction of an epithelial cell growth factor (1988) Oncogene, 2 (2), pp. 105-112
Sułkowska, J.I., Morcos, F., Weigt, M., Hwa, T., Onuchic, J.N., Genomics-aided structure prediction (2012) Proc. Natl. Acad. Sci. USA, 109 (26), pp. 10340-10345
Telling, G.C., Williams, J., Constructing chimeric type 12/type 5 adenovirus E1A genes and using them to identify an oncogenic determinant of adenovirus type 12 (1994) J. Virol., 68 (2), pp. 877-887
Toth-Petroczy, A., Meszaros, B., Simon, I., Dunker, A.K., Uversky, V.N., Fuxreiter, M., Assessing conservation of disordered regions in proteins (2008) Open Proteom. J., 1 (1), pp. 46-53
Toth-Petroczy, A., Palmedo, P., Ingraham, J., Hopf, T.A., Berger, B., Sander, C., Structured states of disordered proteins from genomic sequences (2016) Cell, 167 (1), pp. 158-170. , (e12)
Varadi, M., Kosol, S., Lebrun, P., Valentini, E., Blackledge, M., Dunker, A.K., PE-DB: a database of structural ensembles of intrinsically disordered and of unfolded proteins (2014) Nucleic Acids Res., 42 (D1), pp. 326-335
Webster, L.C., Zhang, K., Chance, B., Ayene, I., Culp, J.S., Huang, W.J., Conversion of the E1A Cys4 zinc finger to a nonfunctional His2,Cys2 zinc finger by a single point mutation (1991) Proc. Natl. Acad. Sci. USA, 88 (22), pp. 9989-9993
Whalen, S.G., Marcellus, R.C., Barbeau, D., Branton, P.E., Importance of the Ser-132 phosphorylation site in cell transformation and apoptosis induced by the adenovirus type 5 E1A protein (1996) J. Virol., 70 (8), pp. 5373-5383
Whyte, P., Buchkovich, K.J., Horowitz, J.M., Friend, S.H., Raybuck, M., Weinberg, R.A., Association between an oncogene and an anti-oncogene: the adenovirus E1A proteins bind to the retinoblastoma gene product (1988) Nature, 334 (6178), pp. 124-129
Whyte, P., Ruley, H.E., Harlow, E., Two regions of the adenovirus early region 1A proteins are required for transformation (1988) J. Virol., 62 (1), pp. 257-265
Williams, J., Zhang, Y., Williams, M.A., Hou, S., Kushner, D., Ricciardi, R.P., E1A-based determinants of oncogenicity in human adenovirus groups A and C (2004) Curr. Top. Microbiol Immunol., 273, pp. 245-288
Wright, P.E., Dyson, H.J., Intrinsically Disordered Proteins in Cellular Signaling and Regulation (2015) Nat. Rev. Mol. Cell Biol., 16 (1), pp. 18-29
Zhou, H.X., Quantitative account of the enhanced affinity of two linked scFvs specific for different epitopes on the same antigen (2003) J. Mol. Biol., 329 (3), pp. 1-8
Zhou, H.X., Polymer Models of Protein Stability, Folding, and Interactions (2004) Biochemistry, 43 (8), pp. 2141-2154
ISSN:00426822
DOI:10.1016/j.virol.2018.08.012