Interplay between sequence, structure and linear motifs in the adenovirus E1A hub protein

E1A is the main transforming protein in mastadenoviruses. This work uses bioinformatics to extrapolate experimental knowledge from Human adenovirus serotype 5 and 12 E1A proteins to all known serotypes. A conserved domain architecture with a high degree of intrinsic disorder acts as a scaffold for m...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Glavina, J.
Otros Autores: Román, E.A, Espada, R., de Prat-Gay, G., Chemes, L.B, Sánchez, I.E
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Academic Press Inc. 2018
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 29215caa a22021737a 4500
001 PAPER-24939
003 AR-BaUEN
005 20230518205652.0
008 190410s2018 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85053763490 
024 7 |2 cas  |a Adenovirus E1A Proteins 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a VIRLA 
100 1 |a Glavina, J. 
245 1 0 |a Interplay between sequence, structure and linear motifs in the adenovirus E1A hub protein 
260 |b Academic Press Inc.  |c 2018 
270 1 0 |m Chemes, L.B.; Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Biotecnológicas IIB-INTECH, Universidad Nacional de San Martín, San MartínArgentina; email: lchemes@iib.unsam.edu.ar 
506 |2 openaire  |e Política editorial 
504 |a Allende, J.E., Allende, C.C., Protein kinases. 4. Protein kinase CK2: an enzyme with multiple substrates and a puzzling regulation (1995) FASEB J., 9 (5), pp. 313-323 
504 |a Ansieau, S., Leutz, A., The conserved Mynd domain of BS69 binds cellular and oncoviral proteins through a common PXLXP motif (2002) J. Biol. Chem., 277 (7), pp. 4906-4910 
504 |a Ashkenazy, H., Abadi, S., Martz, E., Chay, O., Mayrose, I., Pupko, T., ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules (2016) Nucleic Acids Res, 44 (W1), pp. W344-W350 
504 |a Avvakumov, N., Wheeler, R., D'Halluin, J.C., Mymryk, J.S., Comparative sequence analysis of the largest E1A proteins of human and simian adenoviruses (2002) J. Virol., 76 (16), pp. 7968-7975 
504 |a Avvakumov, N., Kajon, A.E., Hoeben, R.C., Mymryk, J.S., Comprehensive sequence analysis of the E1A proteins of human and simian adenoviruses (2004) Virology, 329 (2), pp. 477-492 
504 |a Benjamini, Y., Hochberg, Y., Controlling the false discovery rate: a practical and powerful approach to multiple testing (1995) J. R. Stat. Soc. Ser. B Methodol., 57 (1), pp. 289-300 
504 |a Bondesson, M., Svensson, C., Linder, S., Akusjärvi, G., The carboxy-terminal exon of the adenovirus E1A protein is required for E4F-dependent transcription activation (1992) EMBO J., 11 (9), pp. 3347-3354 
504 |a Borcherds, W., Becker, A., Chen, L., Chen, J., Chemes, L.B., Daughdrill, G.W., Optimal affinity enhancement by a conserved flexible linker controls p53 mimicry in MdmX (2017) Biophys. J., 112 (10), pp. 2038-2042 
504 |a Borkosky, S.S., Camporeale, G., Chemes, L.B., Risso, M., Noval, M.G., Sánchez, I.E., Hidden structural codes in protein intrinsic disorder (2017) Biochemistry, 56 (41), pp. 5560-5569 
504 |a Boyd, J.M., Subramanian, T., Schaeper, U., La Regina, M., Bayley, S.T., Chinnadurai, G., A region in the C-terminus of adenovirus 2/5 E1a protein is required for association with a cellular phosphoprotein and important for the negative modulation of T24-ras mediated transformation, tumorigenesis and metastasis (1993) EMBO J., 12 (2), pp. 469-478 
504 |a Boyd, J.M., Loewenstein, P.M., Tang, Q.Q., Yu, L., Green, M., Adenovirus E1A N-terminal amino acid sequence requirements for repression of transcription in vitro and in vivo correlate with those required for E1A interference with TBP-TATA complex formation (2002) J. Virol., 76 (3), pp. 1461-1474 
504 |a Buslje, C.M., Santos, J., Delfino, J.M., Nielsen, M., Correction for phylogeny, small number of observations and data redundancy improves the identification of coevolving amino acid pairs using mutual information (2009) Bioinformatics, 25 (9), pp. 1125-1131 
504 |a Camporeale, G., Lorenzo, J.R., Thomas, M.G., Salvatierra, E., Borkosky, S.S., Risso, M.G., Degenerate cysteine patterns mediate two redox sensing mechanisms in the papillomavirus E7 oncoprotein (2017) Redox Biol., 11, pp. 38-50. , (October 2016) 
504 |a Chatton, B., Bocco, J.L., Gaire, M., Hauss, C., Reimund, B., Goetz, J., Transcriptional activation by the adenovirus larger E1a product is mediated by members of the cellular transcription factor ATF family which can directly associate with E1a (1993) Mol. Cell Biol., 13 (1), pp. 561-570 
504 |a Chemes, L.B., Sánchez, I.E., Smal, C., de Prat-Gay, G., Targeting mechanism of the retinoblastoma tumor suppressor by a prototypical viral oncoprotein. Structural modularity, intrinsic disorder and phosphorylation of human papillomavirus E7 (2010) FEBS J., 277 (4), pp. 973-988 
504 |a Chemes, L.B., Sánchez, I.E., de Prat-Gay, G., Kinetic recognition of the retinoblastoma tumor suppressor by a specific protein target (2011) J. Mol. Biol., 412 (2), pp. 267-284 
504 |a Chemes, L.B., Glavina, J., Alonso, L.G., Marino-Buslje, C., de Prat-Gay, G., Sánchez, I.E., Sequence evolution of the intrinsically disordered and globular domains of a model viral oncoprotein (2012) PLoS One, 7 (10), p. e47661 
504 |a Chemes, L.B., Glavina, J., Faivovich, J., de Prat-Gay, G., Sánchez, I.E., Evolution of linear motifs within the papillomavirus E7 oncoprotein (2012) J. Mol. Biol., 422 (3), pp. 336-346 
504 |a Chemes, L.B., Camporeale, G., Sánchez, I.E., de Prat-Gay, G., Alonso, L.G., Cysteine-rich positions outside the structural zinc motif of human papillomavirus E7 provide conformational modulation and suggest functional redox roles (2014) Biochemistry, 53 (10), pp. 1680-1696 
504 |a Chemes, L.B., de Prat-Gay, G., Sánchez, I.E., Convergent evolution and mimicry of protein linear motifs in host-pathogen interactions (2015) Curr. Opin. Struct. Biol., 32, pp. 91-101 
504 |a Clementi, C., Nymeyer, H., Onuchic, J.N., Topological and energetic factors: what determines the structural details of the transition state ensemble and en-route intermediates for protein folding? An investigation for small globular proteins (2000) J. Mol. Biol., 298 (5), pp. 937-953. , (arXiv:0003460) 
504 |a Cohen, M.J., Yousef, A.F., Massimi, P., Fonseca, G.J., Todorovic, B., Pelka, P., Dissection of the C-terminal region of E1A redefines the roles of CtBP and other cellular targets in oncogenic transformation (2013) J. Virol., 87 (18), pp. 10348-10355 
504 |a Cohen, M.J., King, C.R., Dikeakos, J.D., Mymryk, J.S., Functional analysis of the C-terminal region of human adenovirus E1A reveals a misidentified nuclear localization signal (2014) Virology, 468–470C, pp. 238-243 
504 |a Corbeil, H.B., Branton, P.E., Functional importance of complex formation between the retinoblastoma tumor suppressor family and adenovirus E1A proteins as determined by mutational analysis of E1A conserved region 2 (1994) J. Virol., 68 (10), pp. 6697-6709 
504 |a Crooks, G.E., Hon, G., Chandonia, J.M., Brenner, S.E., WebLogo: a sequence logo generator (2004) Genome Res, 14 (6), pp. 1188-1190 
504 |a Culp, J.S., Webster, L.C., Friedman, D.J., Smith, C.L., Huang, W.J., Wu, F.Y., The 289-amino acid E1A protein of adenovirus binds zinc in a region that is important for trans-activation (1988) Proc. Natl. Acad. Sci. USA, 85 (17), pp. 6450-6454 
504 |a Daughdrill, G.W., Borcherds, W.M., Wu, H., Disorder predictors also predict backbone dynamics for a family of disordered proteins (2011) PLoS One, 6 (12), pp. 0-6 
504 |a Davey, N.E., Travé, G., Gibson, T.J., How viruses hijack cell regulation (2011) Trends Biochem. Sci., 36 (3), pp. 159-169 
504 |a Davey, N.E., Van Roey, K., Weatheritt, R.J., Toedt, G., Uyar, B., Altenberg, B., Attributes of short linear motifs (2012) Mol. Biosyst., 8 (1), pp. 268-281 
504 |a Davison, A.J., Benko, M., Harrach, B., Genetic content and evolution of adenoviruses (2003) J. Gen. Virol., 84 (11), pp. 2895-2908 
504 |a Dinkel, H., Van Roey, K., Michael, S., Davey, N.E., Weatheritt, R.J., Born, D., The eukaryotic linear motif resource ELM: 10 years and counting (2014) Nucleic Acids Res., 42 (Database issue), pp. D259-66 
504 |a Doerfler, W., Böhm, P., (2004), 273, pp. 05715-1. , http://dx.doi.org/10.1007/978-3-662-05599-1, Adenoviruses: Model and Vectors in Virus-Host Interactions; of Current Topics in Microbiology and Immunology. 1 ed.; Berlin, Heidelberg: Springer Berlin Heidelberg. ISBN 978-3-642-; Dosztányi, Z., Csizmók, V., Tompa, P., Simon, I., IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content (2005) Bioinformatics, 21 (16), pp. 3433-3434 
504 |a Dyson, H.J., Wright, P.E., Role of intrinsic protein disorder in the function and interactions of the transcriptional coactivators CREB-binding Protein (CBP) and p300 (2016) J. Biol. Chem., 291 (13), pp. 6714-6722. , (arXiv:NIHMS150003) 
504 |a Dyson, N.J., Guida, P., McCall, C., Harlow, E., Adenovirus E1A makes two distinct contacts with the retinoblastoma protein (1992) J. Virol., 66 (7), pp. 4606-4611 
504 |a Edgar, R.C., MUSCLE: multiple sequence alignment with high accuracy and high throughput (2004) Nucleic Acids Res., 32 (5), pp. 1792-1797 
504 |a Espada, R., Parra, R.G., Mora, T., Walczak, A.M., Ferreiro, D.U., Capturing coevolutionary signals inrepeat proteins (2015) BMC Bioinforma., 16 (1), p. 207. , 1407.6903, (arXiv:) 
504 |a Ferrari, R., Pellegrini, M., Horwitz, G.A., Xie, W., Berk, A.J., Kurdistani, S.K., Epigenetic reprogramming by adenovirus e1a (2008) Science, 321 (5892), pp. 1086-1088 
504 |a Ferreiro, D.U., Hegler, J.A., Komives, E.A., Wolynes, P.G., Localizing frustration in native proteins and protein assemblies (2007) Proc. Natl. Acad. Sci. USA, 104 (50), pp. 19819-19824 
504 |a Ferreon, J.C., Martinez-Yamout, M.A., Dyson, H.J., Wright, P.E., Structural basis for subversion of cellular control mechanisms by the adenoviral E1A oncoprotein (2009) Proc. Natl. Acad. Sci. USA, 106 (32), pp. 13260-13265 
504 |a Ferreon, A.C.M., Ferreon, J.C., Wright, P.E., Deniz, A.A., Modulation of allostery by protein intrinsic disorder (2013) Nature, 498 (7454), pp. 390-394 
504 |a Geisberg, J.V., Chen, J.L., Ricciardi, R.P., Subregions of the adenovirus E1A transactivation domain target multiple components of the TFIID complex (1995) Mol. Cell. Biol., 15 (11), pp. 6283-6290 
504 |a Good, P.I., Permutation, Parametric, and Bootstrap Tests of Hypotheses. Springer Series in Statistics (2006), 3 ed. Springer-Verlag New York (); Graham, F.L., Smiley, J., Russell, W.C., Nairn, R., Characteristics of a human cell line transformed by DNA from human adenovirus type 5 (1977) J. Gen. Virol., 36 (1), pp. 59-74 
504 |a Haberz, P., Arai, M., Martinez-Yamout, M.A., Dyson, H.J., Wright, P.E., Mapping the interactions of adenoviral E1A proteins with the p160 nuclear receptor coactivator binding domain of CBP (2016) Protein Sci., 25 (12), pp. 2256-2267 
504 |a Harrach, B., Benkö, M., Both, G.W., Brown, M., Davison, A.J., Echavarría, M., (2011), pp. 125-141. , http://dx.doi.org/10.1016/B978-0-12-384684-6.00009-4, In: King, A.M., Adams, M.J., Carstens, E.B., Lefkowitz, E.J., editors. Virus Taxononmy. Ninth Report. International Committe Taxon. Viruses; chap. Family Adenoviridae; 9 ed. San Diego: Elsevier; Hateboer, G., Gennissen, A., Ramos, Y.F.M., Kerkhoven, R.M., Sonntag-Buck, V., Stunnenberg, H.G., BS69, a novel adenovirus E1A-associated protein that inhibits E1A transactivation (1995) EMBO J., 14 (13), pp. 3159-3169 
504 |a Heck, D.V., Yee, C.L., Howley, P.M., Münger, K., Efficiency of binding the retinoblastoma protein correlates with the transforming capacity of the E7 oncoproteins of the human papillomaviruses (1992) Proc. Natl. Acad. Sci. USA, 89 (10), pp. 4442-4446 
504 |a Henikoff, S., Henikoff, J.G., Position-based sequence weights (1994) J. Mol. Biol., 243 (4), pp. 574-578 
504 |a Hošek, T., Calçada, E.O., Nogueira, M.O., Salvi, M., Pagani, T.D., Felli, I.C., Structural and dynamic characterization of the molecular hub early Region 1A (E1A) from human adenovirus (2016) Chem. - A Eur. J., 22 (37), pp. 13010-13013 
504 |a Humphrey, W., Dalke, A., Schulten, K., VMD: visual molecular dynamics (1996) J. Mol. Graph, 14 (1). , (33-8, 27-8) 
504 |a Ikeda, M.A., Nevins, J.R., Identification of distinct roles for separate E1A domains in disruption of E2F complexes (1993) Mol. Cell. Biol., 13 (11), pp. 7029-7035 
504 |a Isobe, T., Uchida, C., Hattori, T., Kitagawa, K., Oda, T., Kitagawa, M., Ubiquitin-dependent degradation of adenovirus E1A protein is inhibited by BS69 (2006) Biochem. Biophys. Res. Commun., 339 (1), pp. 367-374 
504 |a Köhler, M., Görlich, D., Hartmann, E., Franke, J., Adenoviral E1A protein nuclear import is preferentially mediated by importin alpha3 (2001) Vitr. Virol., 289 (2), pp. 186-191 
504 |a Khanal, S., Ghimire, P., Dhamoon, A., The repertoire of adenovirus in human disease: the innocuous to the deadly (2018) Biomedicines, 6 (1), p. 30 
504 |a Kimelman, D., Miller, J.S., Porter, D., Roberts, B.E., E1a regions of the human adenoviruses and of the highly oncogenic simian adenovirus 7 are closely related (1985) J. Virol., 53 (2), pp. 399-409 
504 |a King, C.R., Zhang, A., Tessier, T.M., Gameiro, S.F., Mymryk, J.S., Hacking the cell: network intrusion and exploitation by adenovirus E1A (2018) MBio, 9 (3), pp. 1-18 
504 |a Larsen, P.L., Tibbetts, C., Adenovirus E1A gene autorepression: revertants of an E1A promoter mutation encode altered E1A proteins (1987) Proc. Natl. Acad. Sci. USA, 84 (December), pp. 8185-8189 
504 |a Liu, F., Green, M.R., Promoter targeting by adenovirus E1a through interaction with different cellular DNA-binding domains (1994) Nature, 368 (6471), pp. 520-525 
504 |a Liu, X., Marmorstein, R., Structure of the retinoblastoma protein bound to adenovirus E1A reveals the molecular basis for viral oncoprotein inactivation of a tumor suppressor (2007) Genes Dev., 21 (21), pp. 2711-2716 
504 |a Liu, X., Clements, A., Zhao, K., Marmorstein, R., Structure of the human Papillomavirus E7 oncoprotein and its mechanism for inactivation of the retinoblastoma tumor suppressor (2006) J. Biol. Chem., 281 (1), pp. 578-586 
504 |a Lyons, R.H., Ferguson, B.Q., Rosenberg, M., Pentapeptide nuclear localization signal in adenovirus E1a (1987) Mol. Cell. Biol., 7 (7), pp. 2451-2456 
504 |a Madison, D.L., Yaciuk, P., Kwok, R.P.S., Lundblad, J.R., Acetylation of the adenovirus-transforming protein E1A determines nuclear localization by disrupting association with importin-alpha (2002) J. Biol. Chem., 277 (41), pp. 38755-38763 
504 |a Martin, A.J.M., Walsh, I., Tosatto, S.C.E., MOBI: a web server to define and visualize structural mobility in NMR protein ensembles (2010) Bioinformatics, 26 (22), pp. 2916-2917 
504 |a Mazzarelli, J.M., Mengus, G., Davidson, I., Ricciardi, R.P., The transactivation domain of adenovirus E1A interacts with the C terminus of human TAF(II)135 (1997) J. Virol., 71 (10), pp. 7978-7983 
504 |a Meng, X., Webb, P., Yang, Y.F., Shuen, M., Yousef, A.F., Baxter, J.D., E1A and a nuclear receptor corepressor splice variant (N-CoRI) are thyroid hormone receptor coactivators that bind in the corepressor mode (2005) Proc. Natl. Acad. Sci. USA, 102 (18), pp. 6267-6272 
504 |a Molloy, D.P., Milner, A.E., Yakub, I.K., Chinnadurai, G., Gallimore, P.H., Grand, R.J.A., Structural determinants present in the C-terminal binding protein binding site of adenovirus early Region 1A proteins (1998) J. Biol. Chem., 273 (33), pp. 20867-20876 
504 |a Molloy, D.P., Smith, K.J., Milner, A.E., Gallimore, P.H., Grand, R.J.A., The structure of the site on adenovirus early Region 1A responsible for binding to TATA-binding protein determined by NMR spectroscopy (1999) J. Biol. Chem., 274 (6), pp. 3503-3512 
504 |a Molloy, D.P., Barral, P.M., Bremner, K.H., Gallimore, P.H., Grand, R.J.A., Structural determinants in adenovirus 12 E1A involved in the interaction with C-terminal binding protein 1 (2000) Virology, 277 (1), pp. 156-166 
504 |a Molloy, D.P., Mapp, K.L., Webster, R., Gallimore, P.H., Grand, R.J.A., Acetylation at a lysine residue adjacent to the CtBP binding motif within adenovirus 12 E1A causes structural disruption and limited reduction of CtBP binding (2006) Virology, 355 (2), pp. 115-126 
504 |a Molloy, D.P., Barral, P.M., Gallimore, P.H., Grand, R.J.A., The effect of CtBP1 binding on the structure of the C-terminal region of adenovirus 12 early region 1A (2007) Virology, 363 (2), pp. 342-356 
504 |a Morcos, F., Pagnani, A., Lunt, B., Bertolino, A., Marks, D.S., Sander, C., Direct-coupling analysis of residue coevolution captures native contacts across many protein families (2011) Proc. Natl. Acad. Sci. USA, 108 (49), pp. E1293-301 
504 |a Ozenne, V., Bauer, F., Salmon, L., Huang, J.R., Jensen, M.R., Segard, S., Flexible-meccano: a tool for the generation of explicit ensemble descriptions of intrinsically disordered proteins and their associated experimental observables (2012) Bioinformatics, 28 (11), pp. 1463-1470 
504 |a Palopoli, N., González Foutel, N.S., Gibson, T.J., Chemes, L.B., Short linear motif core and flanking regions modulate retinoblastoma protein binding affinity and specificity (2018) Protein Eng. Des. Sel., 31 (3), pp. 69-77 
504 |a Pelka, P., Ablack, J.N.G., Fonseca, G.J., Yousef, A.F., Mymryk, J.S., Intrinsic structural disorder in adenovirus E1A: a viral molecular hub linking multiple diverse processes (2008) J. Virol., 82 (15), pp. 7252-7263 
504 |a Perricaudet, M., Akusjärvi, G., Virtanen, A., Pettersson, U., (1979), http://dx.doi.org/10.1038/281694a0, Structure of two spliced mRNAs from the transforming region of human subgroup C adenoviruses; Phelan, C.A., Gampe, R.T., Lambert, M.H., Parks, D.J., Montana, V., Bynum, J., Structure of Rev-erb alpha bound to N-CoR reveals a unique mechanism of nuclear receptor-co-repressor interaction (2010) Nat. Struct. Mol. Biol., 17 (7), pp. 808-814 
504 |a Pronk, S., Páll, S., Schulz, R., Larsson, P., Bjelkmar, P., Apostolov, R., GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit (2013) Bioinformatics, 29 (7), pp. 845-854 
504 |a Radko, S., Koleva, M., James, K.M.D., Jung, R., Mymryk, J.S., Pelka, P., Adenovirus E1A targets the DREF nuclear factor to regulate virus gene expression, DNA replication, and growth (2014) J. Virol., 88 (22), pp. 13469-13481 
504 |a Radko, S., Jung, R., Olanubi, O., Pelka, P., Effects of adenovirus type 5 E1A isoforms on viral replication in arrested human cells (2015) PLoS One, 10 (10), pp. 1-18 
504 |a Rasti, M., Grand, R.J.A., Mymryk, J.S., Gallimore, P.H., Turnell, A.S., Recruitment of CBP/p300, TATA-binding protein, and S8 to distinct regions at the N terminus of adenovirus E1A (2005) J. Virol., 79 (9), pp. 5594-5605 
504 |a Reddy, V.S., Natchiar, S.K., Stewart, P.L., Nemerow, G.R., Crystal structure of human adenovirus at 3.5 Å resolution (2010) Science (80-), 329 (5995), pp. 1071-1075 
504 |a Rotkiewicz, P., Skolnick, J., Fast procedure for reconstruction of full-atom protein models from reduced representations (2008) J. Comput. Chem., 29 (9), pp. 1460-1465 
504 |a Schaeper, U., Boyd, J.M., Verma, S., Uhlmann, E., Subramanian, T., Chinnadurai, G., Molecular cloning and characterization of a cellular phosphoprotein that interacts with a conserved C-terminal domain of adenovirus E1A involved in negative modulation of oncogenic transformation (1995) Proc. Natl. Acad. Sci. USA, 92 (23), pp. 10467-10471 
504 |a Schneider, T.D., Stephens, R.M., Sequence logos: a new way to display consensus sequences (1990) Nucleic Acids Res., 18 (20), pp. 6097-6100 
504 |a Schneider, T.D., Stormo, G.D., Gold, L., Ehrenfeucht, A., Information content of binding sites on nucleotide sequences (1986) J. Mol. Biol., 188 (3), pp. 415-431 
504 |a Shapiro, S.S., Wilk, M.B., An analysis of variance test for normality (Complete Samples) (1965) Biometrika, 52 (3), pp. 591-611 
504 |a Singh, M., Krajewski, M., Mikolajka, A., Holak, T.A., Molecular determinants for the complex formation between the retinoblastoma protein and LXCXE sequences (2005) J. Biol. Chem., 280 (45), pp. 37868-37876 
504 |a Sippl, M.J., Wiederstein, M., Detection of spatial correlations in protein structures and molecular complexes (2012) Structure, 20 (4), pp. 718-728 
504 |a Strath, J., Blair, G.E., Adenovirus subversion of immune surveillance, apoptotic and growth regulatory pathways: a Model for tumorigenesis (2006) Acta Microbiol. Immunol. Hung., 53 (2), pp. 145-169 
504 |a Subramanian, T., Kuppuswamy, M., Nasr, R.J., Chinnadurai, G., An N-terminal region of adenovirus E1a essential for cell transformation and induction of an epithelial cell growth factor (1988) Oncogene, 2 (2), pp. 105-112 
504 |a Sułkowska, J.I., Morcos, F., Weigt, M., Hwa, T., Onuchic, J.N., Genomics-aided structure prediction (2012) Proc. Natl. Acad. Sci. USA, 109 (26), pp. 10340-10345 
504 |a Telling, G.C., Williams, J., Constructing chimeric type 12/type 5 adenovirus E1A genes and using them to identify an oncogenic determinant of adenovirus type 12 (1994) J. Virol., 68 (2), pp. 877-887 
504 |a Toth-Petroczy, A., Meszaros, B., Simon, I., Dunker, A.K., Uversky, V.N., Fuxreiter, M., Assessing conservation of disordered regions in proteins (2008) Open Proteom. J., 1 (1), pp. 46-53 
504 |a Toth-Petroczy, A., Palmedo, P., Ingraham, J., Hopf, T.A., Berger, B., Sander, C., Structured states of disordered proteins from genomic sequences (2016) Cell, 167 (1), pp. 158-170. , (e12) 
504 |a Varadi, M., Kosol, S., Lebrun, P., Valentini, E., Blackledge, M., Dunker, A.K., PE-DB: a database of structural ensembles of intrinsically disordered and of unfolded proteins (2014) Nucleic Acids Res., 42 (D1), pp. 326-335 
504 |a Webster, L.C., Zhang, K., Chance, B., Ayene, I., Culp, J.S., Huang, W.J., Conversion of the E1A Cys4 zinc finger to a nonfunctional His2,Cys2 zinc finger by a single point mutation (1991) Proc. Natl. Acad. Sci. USA, 88 (22), pp. 9989-9993 
504 |a Whalen, S.G., Marcellus, R.C., Barbeau, D., Branton, P.E., Importance of the Ser-132 phosphorylation site in cell transformation and apoptosis induced by the adenovirus type 5 E1A protein (1996) J. Virol., 70 (8), pp. 5373-5383 
504 |a Whyte, P., Buchkovich, K.J., Horowitz, J.M., Friend, S.H., Raybuck, M., Weinberg, R.A., Association between an oncogene and an anti-oncogene: the adenovirus E1A proteins bind to the retinoblastoma gene product (1988) Nature, 334 (6178), pp. 124-129 
504 |a Whyte, P., Ruley, H.E., Harlow, E., Two regions of the adenovirus early region 1A proteins are required for transformation (1988) J. Virol., 62 (1), pp. 257-265 
504 |a Williams, J., Zhang, Y., Williams, M.A., Hou, S., Kushner, D., Ricciardi, R.P., E1A-based determinants of oncogenicity in human adenovirus groups A and C (2004) Curr. Top. Microbiol Immunol., 273, pp. 245-288 
504 |a Wright, P.E., Dyson, H.J., Intrinsically Disordered Proteins in Cellular Signaling and Regulation (2015) Nat. Rev. Mol. Cell Biol., 16 (1), pp. 18-29 
504 |a Zhou, H.X., Quantitative account of the enhanced affinity of two linked scFvs specific for different epitopes on the same antigen (2003) J. Mol. Biol., 329 (3), pp. 1-8 
504 |a Zhou, H.X., Polymer Models of Protein Stability, Folding, and Interactions (2004) Biochemistry, 43 (8), pp. 2141-2154 
520 3 |a E1A is the main transforming protein in mastadenoviruses. This work uses bioinformatics to extrapolate experimental knowledge from Human adenovirus serotype 5 and 12 E1A proteins to all known serotypes. A conserved domain architecture with a high degree of intrinsic disorder acts as a scaffold for multiple linear motifs with variable occurrence mediating the interaction with over fifty host proteins. While linear motifs contribute strongly to sequence conservation within intrinsically disordered E1A regions, motif repertoires can deviate significantly from those found in prototypical serotypes. Close to one hundred predicted residue-residue contacts suggest the presence of stable structure in the CR3 domain and of specific conformational ensembles involving both short- and long-range intramolecular interactions. Our computational results suggest that E1A sequence conservation and co-evolution reflect the evolutionary pressure to maintain a mainly disordered, yet non-random conformation harboring a high number of binding motifs that mediate viral hijacking of the cell machinery. © 2018 Elsevier Inc.  |l eng 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica, PICT 2015-1213, PICT 2012-2550 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: PIP 2014-2016 11220130100558CO 
536 |a Detalles de la financiación: PICT 2013-1895 
536 |a Detalles de la financiación: We acknowledge funding from  Agencia Nacional de Promoción Científica y Tecnológica ( PICT 2012-2550 and PICT 2015-1213 to I.E.S. and PICT 2013-1895 to L.B.C.), Consejo Nacional de Investigaciones Científicas y Técnicas (Graduate fellowship to J.G. and R.E.; L.B.C., G.d.P.G., E.A.R. and I.E.S. are CONICET career investigators, L.B.C. is the recipient of PIP 2014-2016 11220130100558CO ). Help from Alan Bush with statistical analyses is gratefully acknowledged. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Appendix A 
593 |a Universidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN). Facultad de Ciencias Exactas y Naturales. Laboratorio de Fisiología de Proteínas, Buenos Aires, Argentina 
593 |a Instituto de Química y Físico-Química Biológicas, Universidad de Buenos Aires, Junín 956, Buenos Aires, 1113AAD, Argentina 
593 |a Protein Structure-Function and Engineering Laboratory, Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires, Argentina 
593 |a Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Biotecnológicas IIB-INTECH, Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina 
593 |a Departamento de Fisiología y Biología Molecular y Celular (DFBMC), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina 
690 1 0 |a ADENOVIRUS 
690 1 0 |a CO-EVOLUTION 
690 1 0 |a E1A 
690 1 0 |a INTRINSIC DISORDER 
690 1 0 |a LINEAR MOTIFS 
690 1 0 |a MOTIF REPERTOIRE 
690 1 0 |a RANDOM POLYMER 
690 1 0 |a SEQUENCE CONSERVATION 
690 1 0 |a E1A PROTEIN 
690 1 0 |a INTRINSICALLY DISORDERED PROTEIN 
690 1 0 |a E1A PROTEIN 
690 1 0 |a AMINO ACID SEQUENCE 
690 1 0 |a ARTICLE 
690 1 0 |a COEVOLUTION 
690 1 0 |a CONSERVED SEQUENCE 
690 1 0 |a CONTROLLED STUDY 
690 1 0 |a HUMAN ADENOVIRUS 12 
690 1 0 |a HUMAN ADENOVIRUS 5 
690 1 0 |a NONHUMAN 
690 1 0 |a PRIORITY JOURNAL 
690 1 0 |a PROTEIN BINDING 
690 1 0 |a PROTEIN CONFORMATION 
690 1 0 |a PROTEIN DOMAIN 
690 1 0 |a PROTEIN MOTIF 
690 1 0 |a PROTEIN PROTEIN INTERACTION 
690 1 0 |a PROTEIN STRUCTURE 
690 1 0 |a AMINO ACID SEQUENCE 
690 1 0 |a CHEMISTRY 
690 1 0 |a GENETICS 
690 1 0 |a HUMAN 
690 1 0 |a HUMAN ADENOVIRUS C 
690 1 0 |a METABOLISM 
690 1 0 |a PROTEIN MOTIF 
690 1 0 |a TRANSLATIONAL PROTEIN MODIFICATION 
690 1 0 |a ADENOVIRUS E1A PROTEINS 
690 1 0 |a ADENOVIRUSES, HUMAN 
690 1 0 |a AMINO ACID MOTIFS 
690 1 0 |a AMINO ACID SEQUENCE 
690 1 0 |a HUMANS 
690 1 0 |a PROTEIN CONFORMATION 
690 1 0 |a PROTEIN DOMAINS 
690 1 0 |a PROTEIN MODIFICATION, TRANSLATIONAL 
700 1 |a Román, E.A. 
700 1 |a Espada, R. 
700 1 |a de Prat-Gay, G. 
700 1 |a Chemes, L.B. 
700 1 |a Sánchez, I.E. 
773 0 |d Academic Press Inc., 2018  |g v. 525  |h pp. 117-131  |p Virology  |x 00426822  |w (AR-BaUEN)CENRE-2  |t Virology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85053763490&doi=10.1016%2fj.virol.2018.08.012&partnerID=40&md5=c405a14d92a0aeed2b30acc3251fbcd2  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.virol.2018.08.012  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00426822_v525_n_p117_Glavina  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00426822_v525_n_p117_Glavina  |y Registro en la Biblioteca Digital 
961 |a paper_00426822_v525_n_p117_Glavina  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 85892