Symmetric interpolation, Exchange Lemma and Sylvester sums

The theory of symmetric multivariate Lagrange interpolation is a beautiful but rather unknown tool that has many applications. Here we derive from it an Exchange Lemma that allows to explain in a simple and natural way the full description of the double sum expressions introduced by Sylvester in 185...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Krick, T.
Otros Autores: Szanto, A., Valdettaro, M.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Taylor and Francis Inc. 2017
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 04362caa a22004817a 4500
001 PAPER-14839
003 AR-BaUEN
005 20230518204526.0
008 190410s2017 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85008675410 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Krick, T. 
245 1 0 |a Symmetric interpolation, Exchange Lemma and Sylvester sums 
260 |b Taylor and Francis Inc.  |c 2017 
270 1 0 |m Krick, T.; Departamento de Matemática, Facultad de Ciencias Exactas y Naturales and IMAS, CONICET, Universidad de Buenos Aires, Ciudad Universitaria Pab.1, Argentina; email: krick@dm.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Chen, W.Y.C., Louck, J.D., Interpolation for symmetric functions (1996) Adv. Math., 117, pp. 147-156 
504 |a D’Andrea, C., Hong, H., Krick, T., Szanto, A., An elementary proof of Sylvester’s double sums for subresultants (2007) J. Symb. Comput., 42, pp. 290-297 
504 |a D’Andrea, C., Hong, H., Krick, T., Szanto, A., Sylvester’s double sums: the general case (2009) J. Symb. Comput., 44, pp. 1164-1175 
504 |a D’Andrea, C., Krick, T., Szanto, A., Subresultants, Sylvester sums and the rational interpolation problem (2015) J. Symb. Comput., 68, pp. 72-83 
504 |a Krick, T., Szanto, A., Sylvester’s double sums: An inductive proof of the general case (2012) J. Symb. Comput., 47, pp. 942-953 
504 |a Lascoux, A., (2003) Symmetric Functions and Combinatorial Operators on Polynomials, , CBMS Regional Conference Series in Mathematics, Vol. 99, Providence, RI: American Mathematical Society (Published for the Conference Board of the Mathematical Sciences, Washington, DC) 
504 |a Notes on Interpolation in one and several variables, , http://igm.univ-mlv.fr/ãl/ARTICLES/interp.dvi.gz, Lascoux, A. Accessed on 13 June 2003 
504 |a Lascoux, A., Pragacz, P., Double Sylvester sums for subresultants and multi-Schur functions (2003) J. Symb. Comput., 35, pp. 689-710 
504 |a Roy, M.-F., Szpirglas, A., Sylvester double sums and subresultants (2011) J. Symb. Comput., 46, pp. 385-395 
504 |a Sylvester, J.J., (1853), On a theory of syzygetic relations of two rational integral functions, comprising an application to the theory of Sturm’s function and that of the greatest algebraical common measure. Phi. Trans. R. Soc. Lond. 1 January 1853, vol. 407–548 (appears also in Collected Mathematical Papers of James Joseph Sylvester, Vol. 1, Chelsea Publishing Co., 1973, pp. 429–586) 
520 3 |a The theory of symmetric multivariate Lagrange interpolation is a beautiful but rather unknown tool that has many applications. Here we derive from it an Exchange Lemma that allows to explain in a simple and natural way the full description of the double sum expressions introduced by Sylvester in 1853 in terms of subresultants and their Bézout coefficients. © 2017 Taylor & Francis.  |l eng 
593 |a Departamento de Matemática, Facultad de Ciencias Exactas y Naturales and IMAS, CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina 
593 |a Department of Mathematics, North Carolina State University, Raleigh, NC, United States 
593 |a Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina 
690 1 0 |a SUBRESULTANTS 
690 1 0 |a SYLVESTER DOUBLE SUMS 
690 1 0 |a SYMMETRIC LAGRANGE INTERPOLATION 
700 1 |a Szanto, A. 
700 1 |a Valdettaro, M. 
773 0 |d Taylor and Francis Inc., 2017  |g v. 45  |h pp. 3231-3250  |k n. 8  |p Commun. Algebra  |x 00927872  |w (AR-BaUEN)CENRE-4243  |t Communications in Algebra 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85008675410&doi=10.1080%2f00927872.2016.1236121&partnerID=40&md5=9bf39e181f3e789b308f8099e262ac41  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1080/00927872.2016.1236121  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00927872_v45_n8_p3231_Krick  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00927872_v45_n8_p3231_Krick  |y Registro en la Biblioteca Digital 
961 |a paper_00927872_v45_n8_p3231_Krick  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 75792