Symmetric interpolation, Exchange Lemma and Sylvester sums
The theory of symmetric multivariate Lagrange interpolation is a beautiful but rather unknown tool that has many applications. Here we derive from it an Exchange Lemma that allows to explain in a simple and natural way the full description of the double sum expressions introduced by Sylvester in 185...
Guardado en:
Autor principal: | |
---|---|
Otros Autores: | , |
Formato: | Capítulo de libro |
Lenguaje: | Inglés |
Publicado: |
Taylor and Francis Inc.
2017
|
Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
Aporte de: | Registro referencial: Solicitar el recurso aquí |
LEADER | 04362caa a22004817a 4500 | ||
---|---|---|---|
001 | PAPER-14839 | ||
003 | AR-BaUEN | ||
005 | 20230518204526.0 | ||
008 | 190410s2017 xx ||||fo|||| 00| 0 eng|d | ||
024 | 7 | |2 scopus |a 2-s2.0-85008675410 | |
040 | |a Scopus |b spa |c AR-BaUEN |d AR-BaUEN | ||
100 | 1 | |a Krick, T. | |
245 | 1 | 0 | |a Symmetric interpolation, Exchange Lemma and Sylvester sums |
260 | |b Taylor and Francis Inc. |c 2017 | ||
270 | 1 | 0 | |m Krick, T.; Departamento de Matemática, Facultad de Ciencias Exactas y Naturales and IMAS, CONICET, Universidad de Buenos Aires, Ciudad Universitaria Pab.1, Argentina; email: krick@dm.uba.ar |
506 | |2 openaire |e Política editorial | ||
504 | |a Chen, W.Y.C., Louck, J.D., Interpolation for symmetric functions (1996) Adv. Math., 117, pp. 147-156 | ||
504 | |a D’Andrea, C., Hong, H., Krick, T., Szanto, A., An elementary proof of Sylvester’s double sums for subresultants (2007) J. Symb. Comput., 42, pp. 290-297 | ||
504 | |a D’Andrea, C., Hong, H., Krick, T., Szanto, A., Sylvester’s double sums: the general case (2009) J. Symb. Comput., 44, pp. 1164-1175 | ||
504 | |a D’Andrea, C., Krick, T., Szanto, A., Subresultants, Sylvester sums and the rational interpolation problem (2015) J. Symb. Comput., 68, pp. 72-83 | ||
504 | |a Krick, T., Szanto, A., Sylvester’s double sums: An inductive proof of the general case (2012) J. Symb. Comput., 47, pp. 942-953 | ||
504 | |a Lascoux, A., (2003) Symmetric Functions and Combinatorial Operators on Polynomials, , CBMS Regional Conference Series in Mathematics, Vol. 99, Providence, RI: American Mathematical Society (Published for the Conference Board of the Mathematical Sciences, Washington, DC) | ||
504 | |a Notes on Interpolation in one and several variables, , http://igm.univ-mlv.fr/ãl/ARTICLES/interp.dvi.gz, Lascoux, A. Accessed on 13 June 2003 | ||
504 | |a Lascoux, A., Pragacz, P., Double Sylvester sums for subresultants and multi-Schur functions (2003) J. Symb. Comput., 35, pp. 689-710 | ||
504 | |a Roy, M.-F., Szpirglas, A., Sylvester double sums and subresultants (2011) J. Symb. Comput., 46, pp. 385-395 | ||
504 | |a Sylvester, J.J., (1853), On a theory of syzygetic relations of two rational integral functions, comprising an application to the theory of Sturm’s function and that of the greatest algebraical common measure. Phi. Trans. R. Soc. Lond. 1 January 1853, vol. 407–548 (appears also in Collected Mathematical Papers of James Joseph Sylvester, Vol. 1, Chelsea Publishing Co., 1973, pp. 429–586) | ||
520 | 3 | |a The theory of symmetric multivariate Lagrange interpolation is a beautiful but rather unknown tool that has many applications. Here we derive from it an Exchange Lemma that allows to explain in a simple and natural way the full description of the double sum expressions introduced by Sylvester in 1853 in terms of subresultants and their Bézout coefficients. © 2017 Taylor & Francis. |l eng | |
593 | |a Departamento de Matemática, Facultad de Ciencias Exactas y Naturales and IMAS, CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina | ||
593 | |a Department of Mathematics, North Carolina State University, Raleigh, NC, United States | ||
593 | |a Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina | ||
690 | 1 | 0 | |a SUBRESULTANTS |
690 | 1 | 0 | |a SYLVESTER DOUBLE SUMS |
690 | 1 | 0 | |a SYMMETRIC LAGRANGE INTERPOLATION |
700 | 1 | |a Szanto, A. | |
700 | 1 | |a Valdettaro, M. | |
773 | 0 | |d Taylor and Francis Inc., 2017 |g v. 45 |h pp. 3231-3250 |k n. 8 |p Commun. Algebra |x 00927872 |w (AR-BaUEN)CENRE-4243 |t Communications in Algebra | |
856 | 4 | 1 | |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85008675410&doi=10.1080%2f00927872.2016.1236121&partnerID=40&md5=9bf39e181f3e789b308f8099e262ac41 |y Registro en Scopus |
856 | 4 | 0 | |u https://doi.org/10.1080/00927872.2016.1236121 |y DOI |
856 | 4 | 0 | |u https://hdl.handle.net/20.500.12110/paper_00927872_v45_n8_p3231_Krick |y Handle |
856 | 4 | 0 | |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00927872_v45_n8_p3231_Krick |y Registro en la Biblioteca Digital |
961 | |a paper_00927872_v45_n8_p3231_Krick |b paper |c PE | ||
962 | |a info:eu-repo/semantics/article |a info:ar-repo/semantics/artículo |b info:eu-repo/semantics/publishedVersion | ||
999 | |c 75792 |