Growing Adaptive Machines Combining Development and Learning in Artificial Neural Networks /

The pursuit of artificial intelligence has been a highly active domain of research for decades, yielding exciting scientific insights and productive new technologies. In terms of generating intelligence, however, this pursuit has yielded only limited success. This book explores the hypothesis that a...

Descripción completa

Guardado en:
Detalles Bibliográficos
Otros Autores: Kowaliw, Taras (ed.), Bredeche, Nicolas (ed.), Doursat, René (ed.)
Formato: Libro electrónico
Lenguaje:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2014.
Colección:Studies in Computational Intelligence, 557
Materias:
Acceso en línea:http://dx.doi.org/10.1007/978-3-642-55337-0
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 04006Cam#a22004215i#4500
001 INGC-EBK-000773
003 AR-LpUFI
005 20220927110112.0
007 cr nn 008mamaa
008 140604s2014 gw | s |||| 0|eng d
020 |a 9783642553370 
024 7 |a 10.1007/978-3-642-55337-0  |2 doi 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
245 1 0 |a Growing Adaptive Machines   |h [libro electrónico] : ;   |b Combining Development and Learning in Artificial Neural Networks /   |c edited by Taras Kowaliw, Nicolas Bredeche, René Doursat. 
260 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2014. 
300 |a vii, 261 p. :   |b il. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Computational Intelligence,  |x 1860-949X ;  |v 557 
505 0 |a Artificial neurogenesis: An introduction and selective review -- A Brief Introduction to Probabilistic Machine Learning and its Relation to Neuroscience -- Evolving culture versus local minima -- Learning sparse features with an auto-associator -- HyperNEAT: the first five years -- Using the GReaNs (Genetic Regulatory evolving artificial Networks) platform for signal processing, animat control, and artificial multicellular development -- Constructing complex systems via activity-driven unsupervised Hebbian self-organization -- Neuro-centric and holocentric approaches to the evolution of developmental neural networks -- Artificial evolution of plastic neural networks: A few key concepts. 
520 |a The pursuit of artificial intelligence has been a highly active domain of research for decades, yielding exciting scientific insights and productive new technologies. In terms of generating intelligence, however, this pursuit has yielded only limited success. This book explores the hypothesis that adaptive growth is a means of moving forward. By emulating the biological process of development, we can incorporate desirable characteristics of natural neural systems into engineered designs, and thus move closer towards the creation of brain-like systems. The particular focus is on how to design artificial neural networks for engineering tasks. The book consists of contributions from 18 researchers, ranging from detailed reviews of recent domains by senior scientists, to exciting new contributions representing the state of the art in machine learning research. The book begins with broad overviews of artificial neurogenesis and bio-inspired machine learning, suitable both as an introduction to the domains and as a reference for experts. Several contributions provide perspectives and future hypotheses on recent highly successful trains of research, including deep learning, the HyperNEAT model of developmental neural network design, and a simulation of the visual cortex. Other contributions cover recent advances in the design of bio-inspired artificial neural networks, including the creation of machines for classification, the behavioural control of virtual agents, the desi gn of virtual multi-component robots and morphologies, and the creation of flexible intelligence. Throughout, the contributors share their vast expertise on the means and benefits of creating brain-like machines. This book is appropriate for advanced students and practitioners of artificial intelligence and machine learning. 
650 1 4 |a Engineering.  |9 259622 
650 2 4 |a Computational Intelligence.  |9 259845 
650 2 4 |a Artificial Intelligence (incl. Robotics).  |9 259846 
700 1 |a Kowaliw, Taras,   |e ed.  |9 261947 
700 1 |a Bredeche, Nicolas,   |e ed.  |9 261948 
700 1 |a Doursat, René,   |e ed.  |9 261949 
776 0 8 |i Printed edition:  |z 9783642553363 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-55337-0 
912 |a ZDB-2-ENG 
929 |a COM 
942 |c EBK  |6 _ 
950 |a Engineering (Springer-11647) 
999 |a SKV  |c 28201  |d 28201