Advances in Bio-inspired Computing for Combinatorial Optimization Problems

"Advances in Bio-inspired Combinatorial Optimization Problems" illustrates several recent bio-inspired efficient algorithms for solving NP-hard problems. Theoretical bio-inspired concepts and models, in particular for agents, ants and virtual robots are described. Large-scale optimization...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Pintea, Camelia-Mihaela
Formato: Libro electrónico
Lenguaje:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2014.
Colección:Intelligent Systems Reference Library, 57
Materias:
Acceso en línea:http://dx.doi.org/10.1007/978-3-642-40179-4
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 02809Cam#a22004335i#4500
001 INGC-EBK-000675
003 AR-LpUFI
005 20220927110031.0
007 cr nn 008mamaa
008 130807s2014 gw | s |||| 0|eng d
020 |a 9783642401794 
024 7 |a 10.1007/978-3-642-40179-4  |2 doi 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
100 1 |a Pintea, Camelia-Mihaela.  |9 261728 
245 1 0 |a Advances in Bio-inspired Computing for Combinatorial Optimization Problems  |h [libro electrónico] /  |c by Camelia-Mihaela Pintea. 
260 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2014. 
300 |a x, 188 p. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Intelligent Systems Reference Library,  |x 1868-4394 ;  |v 57 
505 0 |a Part I Biological Computing and Optimization -- Part II Ant Algorithms -- Part III Bio-inspired Multi-Agent Systems -- Part IV Applications with Bio-inspired Algorithms -- Part V Conclusions and Remarks. 
520 |a "Advances in Bio-inspired Combinatorial Optimization Problems" illustrates several recent bio-inspired efficient algorithms for solving NP-hard problems. Theoretical bio-inspired concepts and models, in particular for agents, ants and virtual robots are described. Large-scale optimization problems, for example: the Generalized Traveling Salesman Problem and the Railway Traveling Salesman Problem, are solved and their results are discussed. Some of the main concepts and models described in this book are: inner rule to guide ant search - a recent model in ant optimization, heterogeneous sensitive ants; virtual sensitive robots; ant-based techniques for static and dynamic routing problems; stigmergic collaborative agents and learning sensitive agents. This monograph is useful for researchers, students and all people interested in the recent natural computing frameworks. The reader is presumed to have knowledge of combinatorial optimization, graph theory, algorithms and programming. The book should furthermore allow readers to acquire ideas, concepts and models to use and develop new software for solving complex real-life problems. 
650 0 |a Operations research.  |9 259877 
650 0 |a Decision making.  |9 259878 
650 1 4 |a Engineering.  |9 259622 
650 2 4 |a Computational Intelligence.  |9 259845 
650 2 4 |a Artificial Intelligence (incl. Robotics).  |9 259846 
650 2 4 |a Decision Theory.  |9 260583 
776 0 8 |i Printed edition:  |z 9783642401787 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-40179-4 
912 |a ZDB-2-ENG 
929 |a COM 
942 |c EBK  |6 _ 
950 |a Engineering (Springer-11647) 
999 |a SKV  |c 28103  |d 28103