Intelligence for Embedded Systems A Methodological Approach /

Addressing current issues of which any engineer or computer scientist should be aware, this monograph is a response to the need to adopt a new computational paradigm as the methodological basis for designing pervasive embedded systems with sensor capabilities. The requirements of this paradigm are t...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Alippi, Cesare
Formato: Libro electrónico
Lenguaje:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2014.
Materias:
Acceso en línea:http://dx.doi.org/10.1007/978-3-319-05278-6
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 03905Cam#a22004455i#4500
001 INGC-EBK-000459
003 AR-LpUFI
005 20220927105900.0
007 cr nn 008mamaa
008 140308s2014 gw | s |||| 0|eng d
020 |a 9783319052786 
024 7 |a 10.1007/978-3-319-05278-6  |2 doi 
050 4 |a TK7800-8360 
050 4 |a TK7874-7874.9 
072 7 |a TJF  |2 bicssc 
072 7 |a TEC008000  |2 bisacsh 
072 7 |a TEC008070  |2 bisacsh 
100 1 |a Alippi, Cesare.   |9 261131 
245 1 0 |a Intelligence for Embedded Systems   |h [libro electrónico] : ;   |b A Methodological Approach /  |c by Cesare Alippi. 
260 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a xix, 283 p. :   |b il. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Introduction -- From Metrology to Digital Data -- Uncertainty, Informaiton and Learning Mechanisms -- Randomized Algorithms -- Robustness Analysis -- Emotional Cognitive Mechanisms for Embedded Systems -- Performance Estimation and Probably Approximately Correct Computation -- Intelligent Mechanisms in Embedded Systems -- Learning in Nonstationary and Evolving Environments -- Fault Diagnosis Systems. 
520 |a Addressing current issues of which any engineer or computer scientist should be aware, this monograph is a response to the need to adopt a new computational paradigm as the methodological basis for designing pervasive embedded systems with sensor capabilities. The requirements of this paradigm are to control complexity, to limit cost and energy consumption, and to provide adaptation and cognition abilities allowing the embedded system to interact proactively with the real world. The quest for such intelligence requires the formalization of a new generation of intelligent systems able to exploit advances in digital architectures and in sensing technologies. The book sheds light on the theory behind intelligence for embedded systems with specific focus on: ·        robustness (the robustness of a computational flow and its evaluation); ·        intelligence (how to mimic the adaptation and cognition abilities of the human brain), ·        the capacity to learn in non-stationary and evolving environments by detecting changes and reacting accordingly; and ·        a new paradigm that, by accepting results that are correct in probability, allows the complexity of the embedded application the be kept under control. Theories, concepts and methods are provided to motivate researchers in this exciting and timely interdisciplinary area. Applications such as porting a neural network from a high-precision platform to a digital embedded system and evaluat ing its robustness level are described. Examples show how the methodology introduced can be adopted in the case of cyber-physical systems to manage the interaction between embedded devices and physical world.. Researchers and graduate students in computer science and various engineering-related disciplines will find the methods and approaches propounded in Intelligence for Embedded Systems of great interest. The book will also be an important resource for practitioners working on embedded systems and applications. 
650 0 |a Engineering.  |9 259622 
650 0 |a Special purpose computers.  |9 261132 
650 0 |a Computational intelligence.  |9 259845 
650 0 |a Electronics.  |9 259648 
650 0 |a Microelectronics.  |9 259649 
650 2 4 |a Instrumentation.  |9 259652 
776 0 8 |i Printed edition:  |z 9783319052779 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-05278-6 
912 |a ZDB-2-ENG 
929 |a COM 
942 |c EBK  |6 _ 
950 |a Engineering (Springer-11647) 
999 |a SKV  |c 27887  |d 27887