Probabilistic Approaches to Robotic Perception

This book tries to address the following questions: How should the uncertainty and incompleteness inherent to sensing the environment be represented and modelled in a way that will increase the autonomy of a robot? How should a robotic system perceive, infer, decide and act efficiently? These are tw...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Ferreira, Joao Filipe
Otros Autores: Miranda Dias, Jorge
Formato: Libro electrónico
Lenguaje:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2014.
Colección:Springer Tracts in Advanced Robotics, 91
Materias:
Acceso en línea:http://dx.doi.org/10.1007/978-3-319-02006-8
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 03310Cam#a22004815i#4500
001 INGC-EBK-000260
003 AR-LpUFI
005 20220927105738.0
007 cr nn 008mamaa
008 130830s2014 gw | s |||| 0|eng d
020 |a 9783319020068 
024 7 |a 10.1007/978-3-319-02006-8  |2 doi 
050 4 |a TJ210.2-211.495 
050 4 |a T59.5 
072 7 |a TJFM1  |2 bicssc 
072 7 |a TEC037000  |2 bisacsh 
072 7 |a TEC004000  |2 bisacsh 
100 1 |a Ferreira, Joao Filipe.  |9 260595 
245 1 0 |a Probabilistic Approaches to Robotic Perception   |h [libro electrónico] /   |c by Joao Filipe Ferreira, Jorge Miranda Dias. 
260 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a xxix, 242 p. :  
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Tracts in Advanced Robotics,  |x 1610-7438 ;  |v 91 
520 |a This book tries to address the following questions: How should the uncertainty and incompleteness inherent to sensing the environment be represented and modelled in a way that will increase the autonomy of a robot? How should a robotic system perceive, infer, decide and act efficiently? These are two of the challenging questions robotics community and robotic researchers have been facing. The development of robotic domain by the 1980s spurred the convergence of automation to autonomy, and the field of robotics has consequently converged towards the field of artificial intelligence (AI). Since the end of that decade, the general publicâ_Ts imagination has been stimulated by high expectations on autonomy, where AI and robotics try to solve difficult cognitive problems through algorithms developed from either philosophical and anthropological conjectures or incomplete notions of cognitive reasoning. Many of these developments do not unveil even a few of the processes through which biological organisms solve these same problems with little energy and computing resources. The tangible results of this research tendency were many robotic devices demonstrating good performance, but only under well-defined and constrained environments. The adaptability to different and more complex scenarios was very limited.   In this book, the application of Bayesian models and approaches are described in order to develop artificial cognitive systems that carry out complex tasks in real world environments, spurring the design of autonomous, intelligent and adaptive artificial systems, inherently dealing with uncertainty and the â_oirreducible incompleteness of modelsâ__. 
650 0 |a Engineering.  |9 259622 
650 0 |a Image processing.  |9 259604 
650 0 |a Robotics.  |9 259596 
650 0 |a Automation.  |9 259787 
650 2 4 |a Artificial Intelligence (incl. Robotics).  |9 259846 
650 2 4 |a Cognitive Psychology.  |9 260596 
650 2 4 |a Computer Vision.  |9 259927 
650 2 4 |a Signal, Image and Speech Processing.  |9 259616 
700 1 |a Miranda Dias, Jorge.  |9 260597 
776 0 8 |i Printed edition:  |z 9783319020051 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-02006-8 
912 |a ZDB-2-ENG 
929 |a COM 
942 |c EBK  |6 _ 
950 |a Engineering (Springer-11647) 
999 |a SKV  |c 27688  |d 27688