Algorithms for Sparsity-Constrained Optimization
This thesis demonstrates techniques that provide faster and more accurate solutions to a variety of problems in machine learning and signal processing. The author proposes a"greedy" algorithm, deriving sparse solutions with guarantees of optimality. The use of this algorithm removes many o...
Guardado en:
Autor principal: | Bahmani, Sohail |
---|---|
Formato: | Libro electrónico |
Lenguaje: | Inglés |
Publicado: |
Cham :
Springer International Publishing : Imprint: Springer,
2014.
|
Colección: | Springer Theses, Recognizing Outstanding Ph.D. Research,
261 |
Materias: | |
Acceso en línea: | http://dx.doi.org/10.1007/978-3-319-01881-2 |
Aporte de: | Registro referencial: Solicitar el recurso aquí |
Ejemplares similares
-
Geometrical Multiresolution Adaptive Transforms Theory and Applications /
por: Lisowska, Agnieszka
Publicado: (2014) -
Mathematical Progress in Expressive Image Synthesis I Extended and Selected Results from the Symposium MEIS2013 /
Publicado: (2014) -
Wide Area Surveillance Real-time Motion Detection Systems /
Publicado: (2014) -
Innovative Computational Intelligence: A Rough Guide to 134 Clever Algorithms
por: Xing, Bo
Publicado: (2014) -
Analysis of Engineering Drawings and Raster Map Images
por: Henderson, Thomas C.
Publicado: (2014)