Distances and Similarities in Intuitionistic Fuzzy Sets

This book presents the state-of-the-art in theory and practice regarding similarity and distance measures for intuitionistic fuzzy sets. Quantifying similarity and distances is crucial for many applications, e.g. data mining, machine learning, decision making, and control. The work provides readers...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Szmidt, Eulalia
Formato: Libro electrónico
Lenguaje:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2014.
Colección:Studies in Fuzziness and Soft Computing, 307
Materias:
Acceso en línea:http://dx.doi.org/10.1007/978-3-319-01640-5
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 02302Cam#a22004215i#4500
001 INGC-EBK-000232
003 AR-LpUFI
005 20220927105727.0
007 cr nn 008mamaa
008 130723s2014 gw | s |||| 0|eng d
020 |a 9783319016405 
024 7 |a 10.1007/978-3-319-01640-5  |2 doi 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
100 1 |a Szmidt, Eulalia.  |9 260510 
245 1 0 |a Distances and Similarities in Intuitionistic Fuzzy Sets   |h [libro electrónico] /   |c by Eulalia Szmidt. 
260 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a viii, 148 p. :  
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Fuzziness and Soft Computing,  |x 1434-9922 ;  |v 307 
505 0 |a Intuitionistic Fuzzy Sets as a Generalization of Fuzzy Sets -- Distances -- Similarity Measures between Intuitionistic Fuzzy Sets. 
520 |a This book presents the state-of-the-art in theory and practice regarding similarity and distance measures for intuitionistic fuzzy sets. Quantifying similarity and distances is crucial for many applications, e.g. data mining, machine learning, decision making, and control. The work provides readers with a comprehensive set of theoretical concepts and practical tools for both defining and determining similarity between intuitionistic fuzzy sets. It describes an automatic algorithm for deriving intuitionistic fuzzy sets from data, which can aid in the analysis of information in large databases. The book also discusses other important applications, e.g. the use of similarity measures to evaluate the extent of agreement between experts in the context of decision making. 
650 0 |a Operations research.  |9 259877 
650 0 |a Management science.  |9 260511 
650 1 4 |a Engineering.  |9 259622 
650 2 4 |a Computational Intelligence.  |9 259845 
650 2 4 |a Artificial Intelligence (incl. Robotics).  |9 259846 
776 0 8 |i Printed edition:  |z 9783319016399 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-01640-5 
912 |a ZDB-2-ENG 
929 |a COM 
942 |c EBK  |6 _ 
950 |a Engineering (Springer-11647) 
999 |a SKV  |c 27660  |d 27660