The role of viscosity on ion transport in thin-layer electrodeposition

The effects of viscosity variation on ion transport and growth morphology, under constant electric current and convection prevailing regimes , is studied through experiments and computational modeling. The viscosity was changed through glycerol addition. Optical techniques and particle image velocim...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Gonzalez, G., Marshall, G., Molina, F.V., Dengra, S., Sanchez, A.
Formato: CONF
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_NIS01843_v8_n_p43_Gonzalez
Aporte de:
id todo:paper_NIS01843_v8_n_p43_Gonzalez
record_format dspace
spelling todo:paper_NIS01843_v8_n_p43_Gonzalez2023-10-03T16:45:43Z The role of viscosity on ion transport in thin-layer electrodeposition Gonzalez, G. Marshall, G. Molina, F.V. Dengra, S. Sanchez, A. Charge transfer Concentration (process) Electric currents Electrolytes Fractals Solutions Velocity measurement Viscosity Computational modeling Electrostatic potential Ion transport Viscosity variations Electrodeposition The effects of viscosity variation on ion transport and growth morphology, under constant electric current and convection prevailing regimes , is studied through experiments and computational modeling. The viscosity was changed through glycerol addition. Optical techniques and particle image velocimetry using micron sized particles, allowed the tracking of the convective, migration and concentration fronts and the measurement of fluid velocity. Computational modeling is based on a macroscopic model describing the coupling of ion transport, electrostatic potential and fluid flow. Experimental results and computational modeling show that concentration and convective fronts slow down with viscosity, but their time scaling follows the same law as for pure aqueous solutions. Velocity measurements reveal that increasing viscosity the intensity of gravitoconvective motion decreases, while gravitoconvection becomes relatively stronger. Fil:Gonzalez, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Molina, F.V. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Dengra, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Sanchez, A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. CONF info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_NIS01843_v8_n_p43_Gonzalez
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Charge transfer
Concentration (process)
Electric currents
Electrolytes
Fractals
Solutions
Velocity measurement
Viscosity
Computational modeling
Electrostatic potential
Ion transport
Viscosity variations
Electrodeposition
spellingShingle Charge transfer
Concentration (process)
Electric currents
Electrolytes
Fractals
Solutions
Velocity measurement
Viscosity
Computational modeling
Electrostatic potential
Ion transport
Viscosity variations
Electrodeposition
Gonzalez, G.
Marshall, G.
Molina, F.V.
Dengra, S.
Sanchez, A.
The role of viscosity on ion transport in thin-layer electrodeposition
topic_facet Charge transfer
Concentration (process)
Electric currents
Electrolytes
Fractals
Solutions
Velocity measurement
Viscosity
Computational modeling
Electrostatic potential
Ion transport
Viscosity variations
Electrodeposition
description The effects of viscosity variation on ion transport and growth morphology, under constant electric current and convection prevailing regimes , is studied through experiments and computational modeling. The viscosity was changed through glycerol addition. Optical techniques and particle image velocimetry using micron sized particles, allowed the tracking of the convective, migration and concentration fronts and the measurement of fluid velocity. Computational modeling is based on a macroscopic model describing the coupling of ion transport, electrostatic potential and fluid flow. Experimental results and computational modeling show that concentration and convective fronts slow down with viscosity, but their time scaling follows the same law as for pure aqueous solutions. Velocity measurements reveal that increasing viscosity the intensity of gravitoconvective motion decreases, while gravitoconvection becomes relatively stronger.
format CONF
author Gonzalez, G.
Marshall, G.
Molina, F.V.
Dengra, S.
Sanchez, A.
author_facet Gonzalez, G.
Marshall, G.
Molina, F.V.
Dengra, S.
Sanchez, A.
author_sort Gonzalez, G.
title The role of viscosity on ion transport in thin-layer electrodeposition
title_short The role of viscosity on ion transport in thin-layer electrodeposition
title_full The role of viscosity on ion transport in thin-layer electrodeposition
title_fullStr The role of viscosity on ion transport in thin-layer electrodeposition
title_full_unstemmed The role of viscosity on ion transport in thin-layer electrodeposition
title_sort role of viscosity on ion transport in thin-layer electrodeposition
url http://hdl.handle.net/20.500.12110/paper_NIS01843_v8_n_p43_Gonzalez
work_keys_str_mv AT gonzalezg theroleofviscosityoniontransportinthinlayerelectrodeposition
AT marshallg theroleofviscosityoniontransportinthinlayerelectrodeposition
AT molinafv theroleofviscosityoniontransportinthinlayerelectrodeposition
AT dengras theroleofviscosityoniontransportinthinlayerelectrodeposition
AT sancheza theroleofviscosityoniontransportinthinlayerelectrodeposition
AT gonzalezg roleofviscosityoniontransportinthinlayerelectrodeposition
AT marshallg roleofviscosityoniontransportinthinlayerelectrodeposition
AT molinafv roleofviscosityoniontransportinthinlayerelectrodeposition
AT dengras roleofviscosityoniontransportinthinlayerelectrodeposition
AT sancheza roleofviscosityoniontransportinthinlayerelectrodeposition
_version_ 1807322723992469504