New algorithms for composite retrieval

Internet users constantly make searches to find objects or results of their interest, generally through terms or phrases. Traditional search offers only solutions that take into account just the individual characteristics of the results, and not the relations they have with the rest of the universe....

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Feuerstein, E., Knebel, J.A., Mendez-Diaz, I., Stein, A., Zabala, P., Accenture; CONICYT; et al.; NIC Chile; RyC Consultores Asociados; Telefonica I+D
Formato: CONF
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_97815090_v_n_p_Feuerstein
Aporte de:
id todo:paper_97815090_v_n_p_Feuerstein
record_format dspace
spelling todo:paper_97815090_v_n_p_Feuerstein2023-10-03T16:43:48Z New algorithms for composite retrieval Feuerstein, E. Knebel, J.A. Mendez-Diaz, I. Stein, A. Zabala, P. Accenture; CONICYT; et al.; NIC Chile; RyC Consultores Asociados; Telefonica I+D Composite retrieval Heuristics Computer programming Computer science Heuristics Individual characteristics Internet users Search criterion Similarity criteria Heuristic algorithms Internet users constantly make searches to find objects or results of their interest, generally through terms or phrases. Traditional search offers only solutions that take into account just the individual characteristics of the results, and not the relations they have with the rest of the universe. Typically, we are given an ordered list of the results related to the search criterion, which implies the need of changing several times the terms of the query to get to a solution that is more adequate to the intended search goal. As a solution to this problem, Composite Retrieval proposes that the results to a query may be grouped in sets of items (bundles), related through some similarity criterion, but at the same time are complementary. In this work we propose heuristic algorithms for Composite Retrieval which are evaluated experimentally, showing performance improvements over the previous results presented in the literature. © 2016 IEEE. Fil:Mendez-Diaz, I. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Zabala, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. CONF info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_97815090_v_n_p_Feuerstein
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Composite retrieval
Heuristics
Computer programming
Computer science
Heuristics
Individual characteristics
Internet users
Search criterion
Similarity criteria
Heuristic algorithms
spellingShingle Composite retrieval
Heuristics
Computer programming
Computer science
Heuristics
Individual characteristics
Internet users
Search criterion
Similarity criteria
Heuristic algorithms
Feuerstein, E.
Knebel, J.A.
Mendez-Diaz, I.
Stein, A.
Zabala, P.
Accenture; CONICYT; et al.; NIC Chile; RyC Consultores Asociados; Telefonica I+D
New algorithms for composite retrieval
topic_facet Composite retrieval
Heuristics
Computer programming
Computer science
Heuristics
Individual characteristics
Internet users
Search criterion
Similarity criteria
Heuristic algorithms
description Internet users constantly make searches to find objects or results of their interest, generally through terms or phrases. Traditional search offers only solutions that take into account just the individual characteristics of the results, and not the relations they have with the rest of the universe. Typically, we are given an ordered list of the results related to the search criterion, which implies the need of changing several times the terms of the query to get to a solution that is more adequate to the intended search goal. As a solution to this problem, Composite Retrieval proposes that the results to a query may be grouped in sets of items (bundles), related through some similarity criterion, but at the same time are complementary. In this work we propose heuristic algorithms for Composite Retrieval which are evaluated experimentally, showing performance improvements over the previous results presented in the literature. © 2016 IEEE.
format CONF
author Feuerstein, E.
Knebel, J.A.
Mendez-Diaz, I.
Stein, A.
Zabala, P.
Accenture; CONICYT; et al.; NIC Chile; RyC Consultores Asociados; Telefonica I+D
author_facet Feuerstein, E.
Knebel, J.A.
Mendez-Diaz, I.
Stein, A.
Zabala, P.
Accenture; CONICYT; et al.; NIC Chile; RyC Consultores Asociados; Telefonica I+D
author_sort Feuerstein, E.
title New algorithms for composite retrieval
title_short New algorithms for composite retrieval
title_full New algorithms for composite retrieval
title_fullStr New algorithms for composite retrieval
title_full_unstemmed New algorithms for composite retrieval
title_sort new algorithms for composite retrieval
url http://hdl.handle.net/20.500.12110/paper_97815090_v_n_p_Feuerstein
work_keys_str_mv AT feuersteine newalgorithmsforcompositeretrieval
AT knebelja newalgorithmsforcompositeretrieval
AT mendezdiazi newalgorithmsforcompositeretrieval
AT steina newalgorithmsforcompositeretrieval
AT zabalap newalgorithmsforcompositeretrieval
AT accentureconicytetalnicchilerycconsultoresasociadostelefonicaid newalgorithmsforcompositeretrieval
_version_ 1807322185676619776