Analyzing the spread of chagas disease with mobile phone data

We use mobile phone records for the analysis of mobility patterns and the detection of possible risk zones of Chagas disease in two Latin American countries. We show that geolocalized call records are rich in social and individual information, which can be used to infer whether an individual has liv...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: De Monasterio, J., Salles, A., Lang, C., Weinberg, D., Minnoni, M., Travizano, M., Sarraute, C., Kumar R., Caverlee J., Tong H., ACM SIGMOD; Association for Computing Machinery (ACM); et al.; IEEE; IEEE Computer Society; IEEE TCDE
Formato: CONF
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_97815090_v_n_p607_DeMonasterio
Aporte de:
id todo:paper_97815090_v_n_p607_DeMonasterio
record_format dspace
spelling todo:paper_97815090_v_n_p607_DeMonasterio2023-10-03T16:43:47Z Analyzing the spread of chagas disease with mobile phone data De Monasterio, J. Salles, A. Lang, C. Weinberg, D. Minnoni, M. Travizano, M. Sarraute, C. Kumar R. Caverlee J. Tong H. ACM SIGMOD; Association for Computing Machinery (ACM); et al.; IEEE; IEEE Computer Society; IEEE TCDE Cellular telephones Health risks Maps Mobile phones Pattern recognition Risk assessment Telephone sets Argentina Case-studies Chagas disease Latin americans Mobile phone datum Mobility pattern Risk zones Specific areas Cellular telephone systems We use mobile phone records for the analysis of mobility patterns and the detection of possible risk zones of Chagas disease in two Latin American countries. We show that geolocalized call records are rich in social and individual information, which can be used to infer whether an individual has lived in an endemic area. We present two case studies, in Argentina and in Mexico, using data provided by mobile phone companies from each country. The risk maps that we generate can be used by health campaign managers to target specific areas and allocate resources more effectively. © 2016 IEEE. Fil:Salles, A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. CONF info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_97815090_v_n_p607_DeMonasterio
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Cellular telephones
Health risks
Maps
Mobile phones
Pattern recognition
Risk assessment
Telephone sets
Argentina
Case-studies
Chagas disease
Latin americans
Mobile phone datum
Mobility pattern
Risk zones
Specific areas
Cellular telephone systems
spellingShingle Cellular telephones
Health risks
Maps
Mobile phones
Pattern recognition
Risk assessment
Telephone sets
Argentina
Case-studies
Chagas disease
Latin americans
Mobile phone datum
Mobility pattern
Risk zones
Specific areas
Cellular telephone systems
De Monasterio, J.
Salles, A.
Lang, C.
Weinberg, D.
Minnoni, M.
Travizano, M.
Sarraute, C.
Kumar R.
Caverlee J.
Tong H.
ACM SIGMOD; Association for Computing Machinery (ACM); et al.; IEEE; IEEE Computer Society; IEEE TCDE
Analyzing the spread of chagas disease with mobile phone data
topic_facet Cellular telephones
Health risks
Maps
Mobile phones
Pattern recognition
Risk assessment
Telephone sets
Argentina
Case-studies
Chagas disease
Latin americans
Mobile phone datum
Mobility pattern
Risk zones
Specific areas
Cellular telephone systems
description We use mobile phone records for the analysis of mobility patterns and the detection of possible risk zones of Chagas disease in two Latin American countries. We show that geolocalized call records are rich in social and individual information, which can be used to infer whether an individual has lived in an endemic area. We present two case studies, in Argentina and in Mexico, using data provided by mobile phone companies from each country. The risk maps that we generate can be used by health campaign managers to target specific areas and allocate resources more effectively. © 2016 IEEE.
format CONF
author De Monasterio, J.
Salles, A.
Lang, C.
Weinberg, D.
Minnoni, M.
Travizano, M.
Sarraute, C.
Kumar R.
Caverlee J.
Tong H.
ACM SIGMOD; Association for Computing Machinery (ACM); et al.; IEEE; IEEE Computer Society; IEEE TCDE
author_facet De Monasterio, J.
Salles, A.
Lang, C.
Weinberg, D.
Minnoni, M.
Travizano, M.
Sarraute, C.
Kumar R.
Caverlee J.
Tong H.
ACM SIGMOD; Association for Computing Machinery (ACM); et al.; IEEE; IEEE Computer Society; IEEE TCDE
author_sort De Monasterio, J.
title Analyzing the spread of chagas disease with mobile phone data
title_short Analyzing the spread of chagas disease with mobile phone data
title_full Analyzing the spread of chagas disease with mobile phone data
title_fullStr Analyzing the spread of chagas disease with mobile phone data
title_full_unstemmed Analyzing the spread of chagas disease with mobile phone data
title_sort analyzing the spread of chagas disease with mobile phone data
url http://hdl.handle.net/20.500.12110/paper_97815090_v_n_p607_DeMonasterio
work_keys_str_mv AT demonasterioj analyzingthespreadofchagasdiseasewithmobilephonedata
AT sallesa analyzingthespreadofchagasdiseasewithmobilephonedata
AT langc analyzingthespreadofchagasdiseasewithmobilephonedata
AT weinbergd analyzingthespreadofchagasdiseasewithmobilephonedata
AT minnonim analyzingthespreadofchagasdiseasewithmobilephonedata
AT travizanom analyzingthespreadofchagasdiseasewithmobilephonedata
AT sarrautec analyzingthespreadofchagasdiseasewithmobilephonedata
AT kumarr analyzingthespreadofchagasdiseasewithmobilephonedata
AT caverleej analyzingthespreadofchagasdiseasewithmobilephonedata
AT tongh analyzingthespreadofchagasdiseasewithmobilephonedata
AT acmsigmodassociationforcomputingmachineryacmetalieeeieeecomputersocietyieeetcde analyzingthespreadofchagasdiseasewithmobilephonedata
_version_ 1807314975939624960