Co-imaging extrinsic, intrinsic and effector caspase activity by fluorescence anisotropy microscopy

In order to overcome intercellular variability and thereby effectively assess signal propagation in biological networks it is imperative to simultaneously quantify multiple biological observables in single living cells. While fluorescent biosensors have been the tool of choice to monitor the dynamic...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Corbat, A.A., Schuermann, K.C., Liguzinski, P., Radon, Y., Bastiaens, P.I.H., Verveer, P.J., Grecco, H.E.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_22132317_v19_n_p210_Corbat
Aporte de:
id todo:paper_22132317_v19_n_p210_Corbat
record_format dspace
spelling todo:paper_22132317_v19_n_p210_Corbat2023-10-03T16:40:35Z Co-imaging extrinsic, intrinsic and effector caspase activity by fluorescence anisotropy microscopy Corbat, A.A. Schuermann, K.C. Liguzinski, P. Radon, Y. Bastiaens, P.I.H. Verveer, P.J. Grecco, H.E. Anisotropy FRET biosensor Apoptotic network Caspase activity Co-monitoring Imaging Polarization microscopy caspase 3 caspase 8 caspase 9 effector caspase anisotropy anisotropy forster resonant energy transfer based biosensor apoptosis Article controlled study correlation analysis enzyme activation enzyme activity fluorescence anisotropy microscopy human human cell microscopy molecular model priority journal simulation apoptosis fluorescence microscopy fluorescence polarization fluorescence resonance energy transfer genetic procedures HeLa cell line metabolism procedures signal transduction Apoptosis Biosensing Techniques Caspases, Effector Enzyme Activation Fluorescence Polarization Fluorescence Resonance Energy Transfer HeLa Cells Humans Microscopy, Fluorescence Signal Transduction In order to overcome intercellular variability and thereby effectively assess signal propagation in biological networks it is imperative to simultaneously quantify multiple biological observables in single living cells. While fluorescent biosensors have been the tool of choice to monitor the dynamics of protein interaction and enzymatic activity, co-measuring more than two of them has proven challenging. In this work, we designed three spectrally separated anisotropy-based Förster Resonant Energy Transfer (FRET) biosensors to overcome this difficulty. We demonstrate this principle by monitoring the activation of extrinsic, intrinsic and effector caspases upon apoptotic stimulus. Together with modelling and simulations we show that time of maximum activity for each caspase can be derived from the anisotropy of the corresponding biosensor. Such measurements correlate relative activation times and refine existing models of biological signalling networks, providing valuable insight into signal propagation. © 2018 JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_22132317_v19_n_p210_Corbat
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Anisotropy FRET biosensor
Apoptotic network
Caspase activity
Co-monitoring
Imaging
Polarization microscopy
caspase 3
caspase 8
caspase 9
effector caspase
anisotropy
anisotropy forster resonant energy transfer based biosensor
apoptosis
Article
controlled study
correlation analysis
enzyme activation
enzyme activity
fluorescence anisotropy microscopy
human
human cell
microscopy
molecular model
priority journal
simulation
apoptosis
fluorescence microscopy
fluorescence polarization
fluorescence resonance energy transfer
genetic procedures
HeLa cell line
metabolism
procedures
signal transduction
Apoptosis
Biosensing Techniques
Caspases, Effector
Enzyme Activation
Fluorescence Polarization
Fluorescence Resonance Energy Transfer
HeLa Cells
Humans
Microscopy, Fluorescence
Signal Transduction
spellingShingle Anisotropy FRET biosensor
Apoptotic network
Caspase activity
Co-monitoring
Imaging
Polarization microscopy
caspase 3
caspase 8
caspase 9
effector caspase
anisotropy
anisotropy forster resonant energy transfer based biosensor
apoptosis
Article
controlled study
correlation analysis
enzyme activation
enzyme activity
fluorescence anisotropy microscopy
human
human cell
microscopy
molecular model
priority journal
simulation
apoptosis
fluorescence microscopy
fluorescence polarization
fluorescence resonance energy transfer
genetic procedures
HeLa cell line
metabolism
procedures
signal transduction
Apoptosis
Biosensing Techniques
Caspases, Effector
Enzyme Activation
Fluorescence Polarization
Fluorescence Resonance Energy Transfer
HeLa Cells
Humans
Microscopy, Fluorescence
Signal Transduction
Corbat, A.A.
Schuermann, K.C.
Liguzinski, P.
Radon, Y.
Bastiaens, P.I.H.
Verveer, P.J.
Grecco, H.E.
Co-imaging extrinsic, intrinsic and effector caspase activity by fluorescence anisotropy microscopy
topic_facet Anisotropy FRET biosensor
Apoptotic network
Caspase activity
Co-monitoring
Imaging
Polarization microscopy
caspase 3
caspase 8
caspase 9
effector caspase
anisotropy
anisotropy forster resonant energy transfer based biosensor
apoptosis
Article
controlled study
correlation analysis
enzyme activation
enzyme activity
fluorescence anisotropy microscopy
human
human cell
microscopy
molecular model
priority journal
simulation
apoptosis
fluorescence microscopy
fluorescence polarization
fluorescence resonance energy transfer
genetic procedures
HeLa cell line
metabolism
procedures
signal transduction
Apoptosis
Biosensing Techniques
Caspases, Effector
Enzyme Activation
Fluorescence Polarization
Fluorescence Resonance Energy Transfer
HeLa Cells
Humans
Microscopy, Fluorescence
Signal Transduction
description In order to overcome intercellular variability and thereby effectively assess signal propagation in biological networks it is imperative to simultaneously quantify multiple biological observables in single living cells. While fluorescent biosensors have been the tool of choice to monitor the dynamics of protein interaction and enzymatic activity, co-measuring more than two of them has proven challenging. In this work, we designed three spectrally separated anisotropy-based Förster Resonant Energy Transfer (FRET) biosensors to overcome this difficulty. We demonstrate this principle by monitoring the activation of extrinsic, intrinsic and effector caspases upon apoptotic stimulus. Together with modelling and simulations we show that time of maximum activity for each caspase can be derived from the anisotropy of the corresponding biosensor. Such measurements correlate relative activation times and refine existing models of biological signalling networks, providing valuable insight into signal propagation. © 2018
format JOUR
author Corbat, A.A.
Schuermann, K.C.
Liguzinski, P.
Radon, Y.
Bastiaens, P.I.H.
Verveer, P.J.
Grecco, H.E.
author_facet Corbat, A.A.
Schuermann, K.C.
Liguzinski, P.
Radon, Y.
Bastiaens, P.I.H.
Verveer, P.J.
Grecco, H.E.
author_sort Corbat, A.A.
title Co-imaging extrinsic, intrinsic and effector caspase activity by fluorescence anisotropy microscopy
title_short Co-imaging extrinsic, intrinsic and effector caspase activity by fluorescence anisotropy microscopy
title_full Co-imaging extrinsic, intrinsic and effector caspase activity by fluorescence anisotropy microscopy
title_fullStr Co-imaging extrinsic, intrinsic and effector caspase activity by fluorescence anisotropy microscopy
title_full_unstemmed Co-imaging extrinsic, intrinsic and effector caspase activity by fluorescence anisotropy microscopy
title_sort co-imaging extrinsic, intrinsic and effector caspase activity by fluorescence anisotropy microscopy
url http://hdl.handle.net/20.500.12110/paper_22132317_v19_n_p210_Corbat
work_keys_str_mv AT corbataa coimagingextrinsicintrinsicandeffectorcaspaseactivitybyfluorescenceanisotropymicroscopy
AT schuermannkc coimagingextrinsicintrinsicandeffectorcaspaseactivitybyfluorescenceanisotropymicroscopy
AT liguzinskip coimagingextrinsicintrinsicandeffectorcaspaseactivitybyfluorescenceanisotropymicroscopy
AT radony coimagingextrinsicintrinsicandeffectorcaspaseactivitybyfluorescenceanisotropymicroscopy
AT bastiaenspih coimagingextrinsicintrinsicandeffectorcaspaseactivitybyfluorescenceanisotropymicroscopy
AT verveerpj coimagingextrinsicintrinsicandeffectorcaspaseactivitybyfluorescenceanisotropymicroscopy
AT greccohe coimagingextrinsicintrinsicandeffectorcaspaseactivitybyfluorescenceanisotropymicroscopy
_version_ 1782027353187155968