An optimal mass transport approach for limits of eigenvalue problems for the fractional p-Laplacian
We find an interpretation using optimal mass transport theory for eigenvalue problems obtained as limits of the eigenvalue problems for the fractional p-Laplacian operators as p → +∞. We deal both with Dirichlet and Neumann boundary conditions. © 2015 by De Gruyter.
Guardado en:
Autores principales: | Del Pezzo, L., Rossi, J., Saintier, N., Salort, A. |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_21919496_v4_n3_p235_DelPezzo |
Aporte de: |
Ejemplares similares
-
An optimal mass transport approach for limits of eigenvalue problems for the fractional p-Laplacian
por: Del Pezzo, Leandro M., et al.
Publicado: (2015) -
An optimization problem for the first eigenvalue of the p-fractional Laplacian
por: Del Pezzo, L., et al. -
An optimization problem for the first eigenvalue of the p-fractional Laplacian
Publicado: (2018) -
Eigenvalues homogenization for the fractional p-laplacian
por: Salort, Ariel Martín
Publicado: (2016) -
Eigenvalues homogenization for the fractional p-laplacian
por: Salort, A.M.