Minimum distance method for directional data and outlier detection

In this paper, we propose estimators based on the minimum distance for the unknown parameters of a parametric density on the unit sphere. We show that these estimators are consistent and asymptotically normally distributed. Also, we apply our proposal to develop a method that allows us to detect pot...

Descripción completa

Detalles Bibliográficos
Autores principales: Sau, M.F., Rodriguez, D.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_18625347_v12_n3_p587_Sau
Aporte de:
id todo:paper_18625347_v12_n3_p587_Sau
record_format dspace
spelling todo:paper_18625347_v12_n3_p587_Sau2023-10-03T16:33:24Z Minimum distance method for directional data and outlier detection Sau, M.F. Rodriguez, D. Asymptotic properties Directional data Outlier detection Robust estimation Data handling Intelligent systems Normal distribution Statistics Asymptotic properties Directional data Minimum distance Outlier Detection Real data sets Robust estimation Small samples Unit spheres Monte Carlo methods In this paper, we propose estimators based on the minimum distance for the unknown parameters of a parametric density on the unit sphere. We show that these estimators are consistent and asymptotically normally distributed. Also, we apply our proposal to develop a method that allows us to detect potential atypical values. The behavior under small samples of the proposed estimators is studied using Monte Carlo simulations. Two applications of our procedure are illustrated with real data sets. © Springer-Verlag Berlin Heidelberg 2017. Fil:Rodriguez, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_18625347_v12_n3_p587_Sau
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Asymptotic properties
Directional data
Outlier detection
Robust estimation
Data handling
Intelligent systems
Normal distribution
Statistics
Asymptotic properties
Directional data
Minimum distance
Outlier Detection
Real data sets
Robust estimation
Small samples
Unit spheres
Monte Carlo methods
spellingShingle Asymptotic properties
Directional data
Outlier detection
Robust estimation
Data handling
Intelligent systems
Normal distribution
Statistics
Asymptotic properties
Directional data
Minimum distance
Outlier Detection
Real data sets
Robust estimation
Small samples
Unit spheres
Monte Carlo methods
Sau, M.F.
Rodriguez, D.
Minimum distance method for directional data and outlier detection
topic_facet Asymptotic properties
Directional data
Outlier detection
Robust estimation
Data handling
Intelligent systems
Normal distribution
Statistics
Asymptotic properties
Directional data
Minimum distance
Outlier Detection
Real data sets
Robust estimation
Small samples
Unit spheres
Monte Carlo methods
description In this paper, we propose estimators based on the minimum distance for the unknown parameters of a parametric density on the unit sphere. We show that these estimators are consistent and asymptotically normally distributed. Also, we apply our proposal to develop a method that allows us to detect potential atypical values. The behavior under small samples of the proposed estimators is studied using Monte Carlo simulations. Two applications of our procedure are illustrated with real data sets. © Springer-Verlag Berlin Heidelberg 2017.
format JOUR
author Sau, M.F.
Rodriguez, D.
author_facet Sau, M.F.
Rodriguez, D.
author_sort Sau, M.F.
title Minimum distance method for directional data and outlier detection
title_short Minimum distance method for directional data and outlier detection
title_full Minimum distance method for directional data and outlier detection
title_fullStr Minimum distance method for directional data and outlier detection
title_full_unstemmed Minimum distance method for directional data and outlier detection
title_sort minimum distance method for directional data and outlier detection
url http://hdl.handle.net/20.500.12110/paper_18625347_v12_n3_p587_Sau
work_keys_str_mv AT saumf minimumdistancemethodfordirectionaldataandoutlierdetection
AT rodriguezd minimumdistancemethodfordirectionaldataandoutlierdetection
_version_ 1807324203950538752