Minimum distance method for directional data and outlier detection
In this paper, we propose estimators based on the minimum distance for the unknown parameters of a parametric density on the unit sphere. We show that these estimators are consistent and asymptotically normally distributed. Also, we apply our proposal to develop a method that allows us to detect pot...
Autores principales: | , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_18625347_v12_n3_p587_Sau |
Aporte de: |
id |
todo:paper_18625347_v12_n3_p587_Sau |
---|---|
record_format |
dspace |
spelling |
todo:paper_18625347_v12_n3_p587_Sau2023-10-03T16:33:24Z Minimum distance method for directional data and outlier detection Sau, M.F. Rodriguez, D. Asymptotic properties Directional data Outlier detection Robust estimation Data handling Intelligent systems Normal distribution Statistics Asymptotic properties Directional data Minimum distance Outlier Detection Real data sets Robust estimation Small samples Unit spheres Monte Carlo methods In this paper, we propose estimators based on the minimum distance for the unknown parameters of a parametric density on the unit sphere. We show that these estimators are consistent and asymptotically normally distributed. Also, we apply our proposal to develop a method that allows us to detect potential atypical values. The behavior under small samples of the proposed estimators is studied using Monte Carlo simulations. Two applications of our procedure are illustrated with real data sets. © Springer-Verlag Berlin Heidelberg 2017. Fil:Rodriguez, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_18625347_v12_n3_p587_Sau |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Asymptotic properties Directional data Outlier detection Robust estimation Data handling Intelligent systems Normal distribution Statistics Asymptotic properties Directional data Minimum distance Outlier Detection Real data sets Robust estimation Small samples Unit spheres Monte Carlo methods |
spellingShingle |
Asymptotic properties Directional data Outlier detection Robust estimation Data handling Intelligent systems Normal distribution Statistics Asymptotic properties Directional data Minimum distance Outlier Detection Real data sets Robust estimation Small samples Unit spheres Monte Carlo methods Sau, M.F. Rodriguez, D. Minimum distance method for directional data and outlier detection |
topic_facet |
Asymptotic properties Directional data Outlier detection Robust estimation Data handling Intelligent systems Normal distribution Statistics Asymptotic properties Directional data Minimum distance Outlier Detection Real data sets Robust estimation Small samples Unit spheres Monte Carlo methods |
description |
In this paper, we propose estimators based on the minimum distance for the unknown parameters of a parametric density on the unit sphere. We show that these estimators are consistent and asymptotically normally distributed. Also, we apply our proposal to develop a method that allows us to detect potential atypical values. The behavior under small samples of the proposed estimators is studied using Monte Carlo simulations. Two applications of our procedure are illustrated with real data sets. © Springer-Verlag Berlin Heidelberg 2017. |
format |
JOUR |
author |
Sau, M.F. Rodriguez, D. |
author_facet |
Sau, M.F. Rodriguez, D. |
author_sort |
Sau, M.F. |
title |
Minimum distance method for directional data and outlier detection |
title_short |
Minimum distance method for directional data and outlier detection |
title_full |
Minimum distance method for directional data and outlier detection |
title_fullStr |
Minimum distance method for directional data and outlier detection |
title_full_unstemmed |
Minimum distance method for directional data and outlier detection |
title_sort |
minimum distance method for directional data and outlier detection |
url |
http://hdl.handle.net/20.500.12110/paper_18625347_v12_n3_p587_Sau |
work_keys_str_mv |
AT saumf minimumdistancemethodfordirectionaldataandoutlierdetection AT rodriguezd minimumdistancemethodfordirectionaldataandoutlierdetection |
_version_ |
1807324203950538752 |