Weighted a priori estimates for solution of (-Δ)mu = f with homogeneous dirichlet conditions

Let u be a weak solution of (-Δ)mu = f with Dirichlet boundary conditions in a smooth bounded domain Ω ⊂ Rn. Then, the main goal of this paper is to prove the following a priori estimate: {double pipe}u{double pipe}Wω 2m,p(Ω) ≤ C{double pipe}f{double pipe}Lω p(Ω), where ω is a weight in the Muckenho...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Durán, R.G., Sanmartino, M., Toschi, M.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_16724070_v26_n4_p339_Duran
Aporte de:
id todo:paper_16724070_v26_n4_p339_Duran
record_format dspace
spelling todo:paper_16724070_v26_n4_p339_Duran2023-10-03T16:29:29Z Weighted a priori estimates for solution of (-Δ)mu = f with homogeneous dirichlet conditions Durán, R.G. Sanmartino, M. Toschi, M. Calderón-Zygmund theory Dirichlet problem Green function weighted Sobolev space Let u be a weak solution of (-Δ)mu = f with Dirichlet boundary conditions in a smooth bounded domain Ω ⊂ Rn. Then, the main goal of this paper is to prove the following a priori estimate: {double pipe}u{double pipe}Wω 2m,p(Ω) ≤ C{double pipe}f{double pipe}Lω p(Ω), where ω is a weight in the Muckenhoupt class Ap. © 2010 Editorial Board of Analysis in Theory and Applications and Springer-Verlag Berlin Heidelberg. Fil:Durán, R.G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_16724070_v26_n4_p339_Duran
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Calderón-Zygmund theory
Dirichlet problem
Green function
weighted Sobolev space
spellingShingle Calderón-Zygmund theory
Dirichlet problem
Green function
weighted Sobolev space
Durán, R.G.
Sanmartino, M.
Toschi, M.
Weighted a priori estimates for solution of (-Δ)mu = f with homogeneous dirichlet conditions
topic_facet Calderón-Zygmund theory
Dirichlet problem
Green function
weighted Sobolev space
description Let u be a weak solution of (-Δ)mu = f with Dirichlet boundary conditions in a smooth bounded domain Ω ⊂ Rn. Then, the main goal of this paper is to prove the following a priori estimate: {double pipe}u{double pipe}Wω 2m,p(Ω) ≤ C{double pipe}f{double pipe}Lω p(Ω), where ω is a weight in the Muckenhoupt class Ap. © 2010 Editorial Board of Analysis in Theory and Applications and Springer-Verlag Berlin Heidelberg.
format JOUR
author Durán, R.G.
Sanmartino, M.
Toschi, M.
author_facet Durán, R.G.
Sanmartino, M.
Toschi, M.
author_sort Durán, R.G.
title Weighted a priori estimates for solution of (-Δ)mu = f with homogeneous dirichlet conditions
title_short Weighted a priori estimates for solution of (-Δ)mu = f with homogeneous dirichlet conditions
title_full Weighted a priori estimates for solution of (-Δ)mu = f with homogeneous dirichlet conditions
title_fullStr Weighted a priori estimates for solution of (-Δ)mu = f with homogeneous dirichlet conditions
title_full_unstemmed Weighted a priori estimates for solution of (-Δ)mu = f with homogeneous dirichlet conditions
title_sort weighted a priori estimates for solution of (-δ)mu = f with homogeneous dirichlet conditions
url http://hdl.handle.net/20.500.12110/paper_16724070_v26_n4_p339_Duran
work_keys_str_mv AT duranrg weightedaprioriestimatesforsolutionofdmufwithhomogeneousdirichletconditions
AT sanmartinom weightedaprioriestimatesforsolutionofdmufwithhomogeneousdirichletconditions
AT toschim weightedaprioriestimatesforsolutionofdmufwithhomogeneousdirichletconditions
_version_ 1807323607765876736