Weighted a priori estimates for solution of (-Δ)mu = f with homogeneous dirichlet conditions
Let u be a weak solution of (-Δ)mu = f with Dirichlet boundary conditions in a smooth bounded domain Ω ⊂ Rn. Then, the main goal of this paper is to prove the following a priori estimate: {double pipe}u{double pipe}Wω 2m,p(Ω) ≤ C{double pipe}f{double pipe}Lω p(Ω), where ω is a weight in the Muckenho...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_16724070_v26_n4_p339_Duran |
Aporte de: |
id |
todo:paper_16724070_v26_n4_p339_Duran |
---|---|
record_format |
dspace |
spelling |
todo:paper_16724070_v26_n4_p339_Duran2023-10-03T16:29:29Z Weighted a priori estimates for solution of (-Δ)mu = f with homogeneous dirichlet conditions Durán, R.G. Sanmartino, M. Toschi, M. Calderón-Zygmund theory Dirichlet problem Green function weighted Sobolev space Let u be a weak solution of (-Δ)mu = f with Dirichlet boundary conditions in a smooth bounded domain Ω ⊂ Rn. Then, the main goal of this paper is to prove the following a priori estimate: {double pipe}u{double pipe}Wω 2m,p(Ω) ≤ C{double pipe}f{double pipe}Lω p(Ω), where ω is a weight in the Muckenhoupt class Ap. © 2010 Editorial Board of Analysis in Theory and Applications and Springer-Verlag Berlin Heidelberg. Fil:Durán, R.G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_16724070_v26_n4_p339_Duran |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Calderón-Zygmund theory Dirichlet problem Green function weighted Sobolev space |
spellingShingle |
Calderón-Zygmund theory Dirichlet problem Green function weighted Sobolev space Durán, R.G. Sanmartino, M. Toschi, M. Weighted a priori estimates for solution of (-Δ)mu = f with homogeneous dirichlet conditions |
topic_facet |
Calderón-Zygmund theory Dirichlet problem Green function weighted Sobolev space |
description |
Let u be a weak solution of (-Δ)mu = f with Dirichlet boundary conditions in a smooth bounded domain Ω ⊂ Rn. Then, the main goal of this paper is to prove the following a priori estimate: {double pipe}u{double pipe}Wω 2m,p(Ω) ≤ C{double pipe}f{double pipe}Lω p(Ω), where ω is a weight in the Muckenhoupt class Ap. © 2010 Editorial Board of Analysis in Theory and Applications and Springer-Verlag Berlin Heidelberg. |
format |
JOUR |
author |
Durán, R.G. Sanmartino, M. Toschi, M. |
author_facet |
Durán, R.G. Sanmartino, M. Toschi, M. |
author_sort |
Durán, R.G. |
title |
Weighted a priori estimates for solution of (-Δ)mu = f with homogeneous dirichlet conditions |
title_short |
Weighted a priori estimates for solution of (-Δ)mu = f with homogeneous dirichlet conditions |
title_full |
Weighted a priori estimates for solution of (-Δ)mu = f with homogeneous dirichlet conditions |
title_fullStr |
Weighted a priori estimates for solution of (-Δ)mu = f with homogeneous dirichlet conditions |
title_full_unstemmed |
Weighted a priori estimates for solution of (-Δ)mu = f with homogeneous dirichlet conditions |
title_sort |
weighted a priori estimates for solution of (-δ)mu = f with homogeneous dirichlet conditions |
url |
http://hdl.handle.net/20.500.12110/paper_16724070_v26_n4_p339_Duran |
work_keys_str_mv |
AT duranrg weightedaprioriestimatesforsolutionofdmufwithhomogeneousdirichletconditions AT sanmartinom weightedaprioriestimatesforsolutionofdmufwithhomogeneousdirichletconditions AT toschim weightedaprioriestimatesforsolutionofdmufwithhomogeneousdirichletconditions |
_version_ |
1807323607765876736 |