The first eigenvalue of the p- Laplacian on quantum graphs

We study the first eigenvalue of the p- Laplacian (with 1 < p< ∞) on a quantum graph with Dirichlet or Kirchoff boundary conditions on the nodes. We find lower and upper bounds for this eigenvalue when we prescribe the total sum of the lengths of the edges and the number of Dirichlet nodes of...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Del Pezzo, L.M., Rossi, J.D.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_16642368_v6_n4_p365_DelPezzo
Aporte de:
id todo:paper_16642368_v6_n4_p365_DelPezzo
record_format dspace
spelling todo:paper_16642368_v6_n4_p365_DelPezzo2023-10-03T16:29:04Z The first eigenvalue of the p- Laplacian on quantum graphs Del Pezzo, L.M. Rossi, J.D. Eigenvalues p- Laplacian Quantum graphs Shape derivative We study the first eigenvalue of the p- Laplacian (with 1 < p< ∞) on a quantum graph with Dirichlet or Kirchoff boundary conditions on the nodes. We find lower and upper bounds for this eigenvalue when we prescribe the total sum of the lengths of the edges and the number of Dirichlet nodes of the graph. Also we find a formula for the shape derivative of the first eigenvalue (assuming that it is simple) when we perturb the graph by changing the length of an edge. Finally, we study in detail the limit cases p→ ∞ and p→ 1. © 2016, Springer International Publishing. Fil:Del Pezzo, L.M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_16642368_v6_n4_p365_DelPezzo
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Eigenvalues
p- Laplacian
Quantum graphs
Shape derivative
spellingShingle Eigenvalues
p- Laplacian
Quantum graphs
Shape derivative
Del Pezzo, L.M.
Rossi, J.D.
The first eigenvalue of the p- Laplacian on quantum graphs
topic_facet Eigenvalues
p- Laplacian
Quantum graphs
Shape derivative
description We study the first eigenvalue of the p- Laplacian (with 1 < p< ∞) on a quantum graph with Dirichlet or Kirchoff boundary conditions on the nodes. We find lower and upper bounds for this eigenvalue when we prescribe the total sum of the lengths of the edges and the number of Dirichlet nodes of the graph. Also we find a formula for the shape derivative of the first eigenvalue (assuming that it is simple) when we perturb the graph by changing the length of an edge. Finally, we study in detail the limit cases p→ ∞ and p→ 1. © 2016, Springer International Publishing.
format JOUR
author Del Pezzo, L.M.
Rossi, J.D.
author_facet Del Pezzo, L.M.
Rossi, J.D.
author_sort Del Pezzo, L.M.
title The first eigenvalue of the p- Laplacian on quantum graphs
title_short The first eigenvalue of the p- Laplacian on quantum graphs
title_full The first eigenvalue of the p- Laplacian on quantum graphs
title_fullStr The first eigenvalue of the p- Laplacian on quantum graphs
title_full_unstemmed The first eigenvalue of the p- Laplacian on quantum graphs
title_sort first eigenvalue of the p- laplacian on quantum graphs
url http://hdl.handle.net/20.500.12110/paper_16642368_v6_n4_p365_DelPezzo
work_keys_str_mv AT delpezzolm thefirsteigenvalueoftheplaplacianonquantumgraphs
AT rossijd thefirsteigenvalueoftheplaplacianonquantumgraphs
AT delpezzolm firsteigenvalueoftheplaplacianonquantumgraphs
AT rossijd firsteigenvalueoftheplaplacianonquantumgraphs
_version_ 1807317078972039168