A numerical algorithm for zero counting. II: Distance to ill-posedness and smoothed analysis
We show a Condition Number Theorem for the condition number of zero counting for real polynomial systems. That is, we show that this condition number equals the inverse of the normalized distance to the set of ill-posed systems (i.e., those having multiple real zeros). As a consequence, a smoothed a...
Guardado en:
Autores principales: | Cucker, F., Krick, T., Malajovich, G., Wschebor, M. |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_16617738_v6_n2_p285_Cucker |
Aporte de: |
Ejemplares similares
-
A numerical algorithm for zero counting. II: Distance to ill-posedness and smoothed analysis
Publicado: (2009) -
A numerical algorithm for zero counting. III: Randomization and condition
por: Cucker, F., et al. -
A numerical algorithm for zero counting. III: Randomization and condition
Publicado: (2012) -
Zero counting for a class of univariate Pfaffian functions
por: Jeronimo, Gabriela Tali, et al.
Publicado: (2016) -
Zero counting for a class of univariate Pfaffian functions
por: Barbagallo, M.L., et al.